BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 12406721)

  • 1. Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.
    Day RE; Rogers PJ; Dawes IW; Higgins VJ
    Appl Environ Microbiol; 2002 Nov; 68(11):5326-35. PubMed ID: 12406721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease.
    Alves SL; Herberts RA; Hollatz C; Trichez D; Miletti LC; de Araujo PS; Stambuk BU
    Appl Environ Microbiol; 2008 Mar; 74(5):1494-501. PubMed ID: 18203856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Thr505 and Ser557 residues of the AGT1-encoded alpha-glucoside transporter are critical for maltotriose transport in Saccharomyces cerevisiae.
    Smit A; Moses SG; Pretorius IS; Cordero Otero RR
    J Appl Microbiol; 2008 Apr; 104(4):1103-11. PubMed ID: 18179544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease.
    Alves SL; Thevelein JM; Stambuk BU
    Lett Appl Microbiol; 2018 Oct; 67(4):377-383. PubMed ID: 29992585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved fermentation performance of a lager yeast after repair of its AGT1 maltose and maltotriose transporter genes.
    Vidgren V; Huuskonen A; Virtanen H; Ruohonen L; Londesborough J
    Appl Environ Microbiol; 2009 Apr; 75(8):2333-45. PubMed ID: 19181838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Key amino acid residues of the AGT1 permease required for maltotriose consumption and fermentation by Saccharomyces cerevisiae.
    Trichez D; Knychala MM; Figueiredo CM; Alves SL; da Silva MA; Miletti LC; de Araujo PS; Stambuk BU
    J Appl Microbiol; 2019 Feb; 126(2):580-594. PubMed ID: 30466168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family.
    Salema-Oom M; Valadão Pinto V; Gonçalves P; Spencer-Martins I
    Appl Environ Microbiol; 2005 Sep; 71(9):5044-9. PubMed ID: 16151085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c.
    Day RE; Higgins VJ; Rogers PJ; Dawes IW
    Yeast; 2002 Sep; 19(12):1015-27. PubMed ID: 12210897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Himalayan
    Brouwers N; Brickwedde A; Gorter de Vries AR; van den Broek M; Weening SM; van den Eijnden L; Diderich JA; Bai FY; Pronk JT; Daran JG
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519660
    [No Abstract]   [Full Text] [Related]  

  • 10. Maltotriose fermentation by Saccharomyces cerevisiae.
    Zastrow CR; Hollatz C; de Araujo PS; Stambuk BU
    J Ind Microbiol Biotechnol; 2001 Jul; 27(1):34-8. PubMed ID: 11598808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Stambuk BU; de Araujo PS
    FEMS Yeast Res; 2001 Apr; 1(1):73-8. PubMed ID: 12702465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function.
    Baker EP; Hittinger CT
    PLoS Genet; 2019 Apr; 15(4):e1007786. PubMed ID: 30946740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of maltotriose transporters from the Saccharomyces eubayanus subgenome of the hybrid Saccharomyces pastorianus lager brewing yeast strain Weihenstephan 34/70.
    Cousseau FE; Alves SL; Trichez D; Stambuk BU
    Lett Appl Microbiol; 2013 Jan; 56(1):21-9. PubMed ID: 23061413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of regulatory elements in the AGT1 promoter of ale and lager strains of brewer's yeast.
    Vidgren V; Kankainen M; Londesborough J; Ruohonen L
    Yeast; 2011 Aug; 28(8):579-94. PubMed ID: 21755532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation.
    Brouwers N; Gorter de Vries AR; van den Broek M; Weening SM; Elink Schuurman TD; Kuijpers NGA; Pronk JT; Daran JG
    PLoS Genet; 2019 Apr; 15(4):e1007853. PubMed ID: 30946741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter.
    Dietvorst J; Londesborough J; Steensma HY
    Yeast; 2005 Jul; 22(10):775-88. PubMed ID: 16088872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colorimetric determination of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Hollatz C; Stambuk BU
    J Microbiol Methods; 2001 Sep; 46(3):253-9. PubMed ID: 11438190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microarray karyotyping of maltose-fermenting Saccharomyces yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization.
    Duval EH; Alves SL; Dunn B; Sherlock G; Stambuk BU
    J Appl Microbiol; 2010 Jul; 109(1):248-59. PubMed ID: 20070441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of maltotriose fermentation by Saccharomyces cerevisiae.
    Stambuk BU; Alves SL; Hollatz C; Zastrow CR
    Lett Appl Microbiol; 2006 Oct; 43(4):370-6. PubMed ID: 16965366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose.
    Hatanaka H; Mitsunaga H; Fukusaki E
    J Biosci Bioeng; 2018 Jan; 125(1):52-58. PubMed ID: 28919251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.