These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 12406749)

  • 1. Widespread N-acetyl-D-glucosamine uptake among pelagic marine bacteria and its ecological implications.
    Riemann L; Azam F
    Appl Environ Microbiol; 2002 Nov; 68(11):5554-62. PubMed ID: 12406749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the nag regulon from Escherichia coli K12 and Klebsiella pneumoniae and of its regulation.
    Vogler AP; Lengeler JW
    Mol Gen Genet; 1989 Oct; 219(1-2):97-105. PubMed ID: 2693951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system.
    Simoni RD; Roseman S; Saier MH
    J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chitinolytic endochitinase and β-N-acetylglucosaminidase-based system from Hevea latex in generating N-acetylglucosamine from chitin.
    Sukprasirt P; Wititsuwannakul R
    Phytochemistry; 2014 Aug; 104():5-11. PubMed ID: 24833032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the binding affinity and transport activity for N-acetylglucosamine of the novel ABC transporter Ngc in the chitin-degrader Streptomyces olivaceoviridis.
    Saito A; Schrempf H
    Mol Genet Genomics; 2004 Jun; 271(5):545-53. PubMed ID: 15148605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcritical water hydrolysis of N-acetyl-D-glucosamine: Hydrolysis mechanism, reaction pathways and optimization for selective production of 5-HMF and levulinic acid.
    Kulkarni SP; Dure SN; Joshi SS; Pandare KV; Mali NA
    Carbohydr Res; 2022 Jun; 516():108560. PubMed ID: 35483153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of the nag regulon of Escherichia coli by N-acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator protein complex in expression of the regulon.
    Plumbridge JA
    J Bacteriol; 1990 May; 172(5):2728-35. PubMed ID: 2158978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of N-acetyl-D-mannosamine and N-acetyl-D-glucosamine in Escherichia coli K1: effect on capsular polysialic acid production.
    Revilla-Nuin B; Reglero A; Martínez-Blanco H; Bravo IG; Ferrero MA; Rodríguez-Aparicio LB
    FEBS Lett; 2002 Jan; 511(1-3):97-101. PubMed ID: 11821056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System.
    Jeckelmann JM; Erni B
    Subcell Biochem; 2019; 92():223-274. PubMed ID: 31214989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants.
    Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH
    J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary relationships among the permease proteins of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Construction of phylogenetic trees and possible relatedness to proteins of eukaryotic mitochondria.
    Reizer A; Pao GM; Saier MH
    J Mol Evol; 1991 Aug; 33(2):179-93. PubMed ID: 1920454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system.
    Aboulwafa M; Zhang Z; Saier MH
    PLoS One; 2019; 14(11):e0219332. PubMed ID: 31751341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii.
    Bassler BL; Yu C; Lee YC; Roseman S
    J Biol Chem; 1991 Dec; 266(36):24276-86. PubMed ID: 1761533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Streptococcus mutans by the antibiotic streptozotocin: mechanisms of uptake and the selection of carbohydrate-negative mutants.
    Jacobson GR; Poy F; Lengeler JW
    Infect Immun; 1990 Feb; 58(2):543-9. PubMed ID: 2137113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of β-N-acetylglucosaminidase from a marine Pseudoalteromonas sp. for application in N-acetyl-glucosamine production.
    Park HJ; Yim JH; Park H; Kim D
    Prep Biochem Biotechnol; 2016 Nov; 46(8):764-771. PubMed ID: 26795587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose can be transported and utilized in Escherichia coli by an altered or overproduced N-acetylglucosamine phosphotransferase system (PTS).
    Crigler J; Bannerman-Akwei L; Cole AE; Eiteman MA; Altman E
    Microbiology (Reading); 2018 Feb; 164(2):163-172. PubMed ID: 29393018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom.
    Eckert EM; Salcher MM; Posch T; Eugster B; Pernthaler J
    Environ Microbiol; 2012 Mar; 14(3):794-806. PubMed ID: 22082109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus.
    Alice AF; Pérez-Martínez G; Sánchez-Rivas C
    Microbiology (Reading); 2003 Jul; 149(Pt 7):1687-1698. PubMed ID: 12855720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli.
    Ammer J; Brennenstuhl M; Schindler P; Höltje JV; Zähner H
    Antimicrob Agents Chemother; 1979 Dec; 16(6):801-7. PubMed ID: 161156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.