These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 12407087)

  • 1. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.
    Onozuka M; Fujita M; Watanabe K; Hirano Y; Niwa M; Nishiyama K; Saito S
    J Dent Res; 2002 Nov; 81(11):743-6. PubMed ID: 12407087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related changes in brain regional activity during chewing: a functional magnetic resonance imaging study.
    Onozuka M; Fujita M; Watanabe K; Hirano Y; Niwa M; Nishiyama K; Saito S
    J Dent Res; 2003 Aug; 82(8):657-60. PubMed ID: 12885854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chewing-induced regional brain activity in edentulous patients who received mandibular implant-supported overdentures: a preliminary report.
    Kimoto K; Ono Y; Tachibana A; Hirano Y; Otsuka T; Ohno A; Yamaya K; Obata T; Onozuka M
    J Prosthodont Res; 2011 Apr; 55(2):89-97. PubMed ID: 20951664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with ¹⁵O-labelled water and magnetic resonance imaging.
    Momose T; Nishikawa J; Watanabe T; Sasaki Y; Senda M; Kubota K; Sato Y; Funakoshi M; Minakuchi S
    Arch Oral Biol; 1997 Jan; 42(1):57-61. PubMed ID: 9134116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of brain activity involved in chewing-side preference during chewing: an fMRI study.
    Jiang H; Liu H; Liu G; Jin Z; Wang L; Ma J; Li H
    J Oral Rehabil; 2015 Jan; 42(1):27-33. PubMed ID: 25159029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chewing-side preference is involved in differential cortical activation patterns during tongue movements after bilateral gum-chewing: a functional magnetic resonance imaging study.
    Shinagawa H; Ono T; Honda E; Sasaki T; Taira M; Iriki A; Kuroda T; Ohyama K
    J Dent Res; 2004 Oct; 83(10):762-6. PubMed ID: 15381715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of posterior dental arch length on brain activity during chewing in patients with mandibular distal extension removable partial dentures.
    Shoi K; Fueki K; Usui N; Taira M; Wakabayashi N
    J Oral Rehabil; 2014 Jul; 41(7):486-95. PubMed ID: 24697794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cortical effect of chewing gum during hand movements: A functional MRI study.
    Jang SH; Kwon HC; Kwon HG; Jang WH
    Somatosens Mot Res; 2015; 32(2):110-3. PubMed ID: 26241164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocal cortical activation patterns during incisal and molar biting correlated with bite force levels: an fMRI study.
    Yoshizawa H; Miyamoto JJ; Hanakawa T; Shitara H; Honda M; Moriyama K
    Sci Rep; 2019 Jun; 9(1):8419. PubMed ID: 31182743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging.
    Takada T; Miyamoto T
    Neurosci Lett; 2004 Apr; 360(3):137-40. PubMed ID: 15082152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive change in chewing-related brain activity while wearing a palatal plate: an functional magnetic resonance imaging study.
    Inamochi Y; Fueki K; Usui N; Taira M; Wakabayashi N
    J Oral Rehabil; 2017 Oct; 44(10):770-778. PubMed ID: 28650517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry of fMRI activation in the primary sensorimotor cortex during unilateral chewing.
    Lotze M; Domin M; Kordass B
    Clin Oral Investig; 2017 May; 21(4):967-973. PubMed ID: 27221516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meta-analysis of brain mechanisms of chewing and clenching movements.
    Lin CS
    J Oral Rehabil; 2018 Aug; 45(8):627-639. PubMed ID: 29782041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fMRI reveals two distinct cerebral networks subserving speech motor control.
    Riecker A; Mathiak K; Wildgruber D; Erb M; Hertrich I; Grodd W; Ackermann H
    Neurology; 2005 Feb; 64(4):700-6. PubMed ID: 15728295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chewing in working memory processing.
    Hirano Y; Obata T; Kashikura K; Nonaka H; Tachibana A; Ikehira H; Onozuka M
    Neurosci Lett; 2008 May; 436(2):189-92. PubMed ID: 18403120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of shortened mandibular dental arch on human brain activity during chewing: an fMRI study].
    Shoi K
    Kokubyo Gakkai Zasshi; 2014 Mar; 81(1):38-44. PubMed ID: 24812766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemispheric dominance of tongue control depends on the chewing-side preference.
    Shinagawa H; Ono T; Ishiwata Y; Honda E; Sasaki T; Taira M; Iriki A; Kuroda T
    J Dent Res; 2003 Apr; 82(4):278-83. PubMed ID: 12651931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional connectivity of human chewing: an fcMRI study.
    Quintero A; Ichesco E; Schutt R; Myers C; Peltier S; Gerstner GE
    J Dent Res; 2013 Mar; 92(3):272-8. PubMed ID: 23355525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activity and human unilateral chewing: an FMRI study.
    Quintero A; Ichesco E; Myers C; Schutt R; Gerstner GE
    J Dent Res; 2013 Feb; 92(2):136-42. PubMed ID: 23103631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of masseter muscle oxygenation and mandibular movement during experimental gum chewing with different hardness.
    Yoshida T; Ishikawa H; Yoshida N; Hisanaga Y
    Acta Odontol Scand; 2009; 67(2):113-21. PubMed ID: 19153844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.