These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 12407197)

  • 1. Phytochrome in cotyledons regulates the expression of genes in the hypocotyl through auxin-dependent and -independent pathways.
    Tanaka S; Nakamura S; Mochizuki N; Nagatani A
    Plant Cell Physiol; 2002 Oct; 43(10):1171-81. PubMed ID: 12407197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of rare-earth light conversion film on the growth and fruit quality of sweet pepper in a solar greenhouse.
    Gao Y; Li G; Cai B; Zhang Z; Li N; Liu Y; Li Q
    Front Plant Sci; 2022; 13():989271. PubMed ID: 36147241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Predictive Value of Phytochrome Photoequilibrium: Consideration of Spectral Distortion Within a Leaf.
    Kusuma P; Bugbee B
    Front Plant Sci; 2021; 12():596943. PubMed ID: 34108976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrograde Induction of phyB Orchestrates Ethylene-Auxin Hierarchy to Regulate Growth.
    Jiang J; Xiao Y; Chen H; Hu W; Zeng L; Ke H; Ditengou FA; Devisetty U; Palme K; Maloof J; Dehesh K
    Plant Physiol; 2020 Jul; 183(3):1268-1280. PubMed ID: 32430463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin Contributes to the Intraorgan Regulation of Gene Expression in Response to Shade.
    Kim S; Mochizuki N; Deguchi A; Nagano AJ; Suzuki T; Nagatani A
    Plant Physiol; 2018 Jun; 177(2):847-862. PubMed ID: 29728454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neighbor Detection Induces Organ-Specific Transcriptomes, Revealing Patterns Underlying Hypocotyl-Specific Growth.
    Kohnen MV; Schmid-Siegert E; Trevisan M; Petrolati LA; Sénéchal F; Müller-Moulé P; Maloof J; Xenarios I; Fankhauser C
    Plant Cell; 2016 Dec; 28(12):2889-2904. PubMed ID: 27923878
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Müller-Moulé P; Nozue K; Pytlak ML; Palmer CM; Covington MF; Wallace AD; Harmer SL; Maloof JN
    PeerJ; 2016; 4():e2574. PubMed ID: 27761349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidermal Phytochrome B Inhibits Hypocotyl Negative Gravitropism Non-Cell-Autonomously.
    Kim J; Song K; Park E; Kim K; Bae G; Choi G
    Plant Cell; 2016 Nov; 28(11):2770-2785. PubMed ID: 27758895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylene- and Shade-Induced Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators.
    Das D; St Onge KR; Voesenek LA; Pierik R; Sasidharan R
    Plant Physiol; 2016 Oct; 172(2):718-733. PubMed ID: 27329224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal Phytochrome Signaling during Photomorphogenesis: From Physiology to Molecular Mechanisms and Back.
    Montgomery BL
    Front Plant Sci; 2016; 7():480. PubMed ID: 27148307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cotyledon-Generated Auxin Is Required for Shade-Induced Hypocotyl Growth in Brassica rapa.
    Procko C; Crenshaw CM; Ljung K; Noel JP; Chory J
    Plant Physiol; 2014 Jul; 165(3):1285-1301. PubMed ID: 24891610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytochrome-induced SIG2 expression contributes to photoregulation of phytochrome signalling and photomorphogenesis in Arabidopsis thaliana.
    Oh S; Montgomery BL
    J Exp Bot; 2013 Dec; 64(18):5457-72. PubMed ID: 24078666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downstream effectors of light- and phytochrome-dependent regulation of hypocotyl elongation in Arabidopsis thaliana.
    Oh S; Warnasooriya SN; Montgomery BL
    Plant Mol Biol; 2013 Apr; 81(6):627-40. PubMed ID: 23456246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photomorphogenesis.
    Arsovski AA; Galstyan A; Guseman JM; Nemhauser JL
    Arabidopsis Book; 2012; 10():e0147. PubMed ID: 22582028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis.
    Leivar P; Tepperman JM; Cohn MM; Monte E; Al-Sady B; Erickson E; Quail PH
    Plant Cell; 2012 Apr; 24(4):1398-419. PubMed ID: 22517317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses.
    Whipple CJ; Kebrom TH; Weber AL; Yang F; Hall D; Meeley R; Schmidt R; Doebley J; Brutnell TP; Jackson DP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):E506-12. PubMed ID: 21808030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade.
    Kozuka T; Kobayashi J; Horiguchi G; Demura T; Sakakibara H; Tsukaya H; Nagatani A
    Plant Physiol; 2010 Aug; 153(4):1608-18. PubMed ID: 20538889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light signal transduction: an infinite spectrum of possibilities.
    Chory J
    Plant J; 2010 Mar; 61(6):982-91. PubMed ID: 20409272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers.
    Hornitschek P; Lorrain S; Zoete V; Michielin O; Fankhauser C
    EMBO J; 2009 Dec; 28(24):3893-902. PubMed ID: 19851283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Right place, right time: Spatiotemporal light regulation of plant growth and development.
    Montgomery BL
    Plant Signal Behav; 2008 Dec; 3(12):1053-60. PubMed ID: 19513238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.