These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 12407671)
1. Protein structure and bioluminescent spectra for firefly bioluminescence. Ugarova NN; Brovko LY Luminescence; 2002; 17(5):321-30. PubMed ID: 12407671 [TBL] [Abstract][Full Text] [Related]
2. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases. Viviani VR; Simões A; Bevilaqua VR; Gabriel GV; Arnoldi FG; Hirano T Biochemistry; 2016 Aug; 55(34):4764-76. PubMed ID: 27391007 [TBL] [Abstract][Full Text] [Related]
3. Pyrearinus termitilluminans larval click beetle luciferase: active site properties, structure and function relationships and comparison with other beetle luciferases. Silva Neto AJ; Scorsato V; Arnoldi FG; Viviani VR Photochem Photobiol Sci; 2009 Dec; 8(12):1748-54. PubMed ID: 20024173 [TBL] [Abstract][Full Text] [Related]
4. An alternative mechanism of bioluminescence color determination in firefly luciferase. Branchini BR; Southworth TL; Murtiashaw MH; Magyar RA; Gonzalez SA; Ruggiero MC; Stroh JG Biochemistry; 2004 Jun; 43(23):7255-62. PubMed ID: 15182171 [TBL] [Abstract][Full Text] [Related]
5. A cysteine-free firefly luciferase retains luminescence activity. Kumita JR; Jain L; Safroneeva E; Woolley GA Biochem Biophys Res Commun; 2000 Jan; 267(1):394-7. PubMed ID: 10623630 [TBL] [Abstract][Full Text] [Related]
6. Site-directed mutagenesis of firefly luciferase: implication of conserved residue(s) in bioluminescence emission spectra among firefly luciferases. Tafreshi NKh; Sadeghizadeh M; Emamzadeh R; Ranjbar B; Naderi-Manesh H; Hosseinkhani S Biochem J; 2008 May; 412(1):27-33. PubMed ID: 18251715 [TBL] [Abstract][Full Text] [Related]
7. The influence of the loop between residues 223-235 in beetle luciferase bioluminescence spectra: a solvent gate for the active site of pH-sensitive luciferases. Viviani VR; Silva Neto AJ; Arnoldi FG; Barbosa JA; Ohmiya Y Photochem Photobiol; 2008; 84(1):138-44. PubMed ID: 18173713 [TBL] [Abstract][Full Text] [Related]
8. Thr226 is a key residue for bioluminescence spectra determination in beetle luciferases. Viviani V; Uchida A; Suenaga N; Ryufuku M; Ohmiya Y Biochem Biophys Res Commun; 2001 Feb; 280(5):1286-91. PubMed ID: 11162668 [TBL] [Abstract][Full Text] [Related]
9. The luciferin binding site residues C/T311 (S314) influence the bioluminescence color of beetle luciferases through main-chain interaction with oxyluciferin phenolate. Viviani VR; Amaral DT; Neves DR; Simões A; Arnoldi FG Biochemistry; 2013 Jan; 52(1):19-27. PubMed ID: 23205709 [TBL] [Abstract][Full Text] [Related]
10. The structural origin and biological function of pH-sensitivity in firefly luciferases. Viviani VR; Arnoldi FG; Neto AJ; Oehlmeyer TL; Bechara EJ; Ohmiya Y Photochem Photobiol Sci; 2008 Feb; 7(2):159-69. PubMed ID: 18264583 [TBL] [Abstract][Full Text] [Related]
11. Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: relationship between bioluminescence spectra and primary structures. Viviani VR; Bechara EJ; Ohmiya Y Biochemistry; 1999 Jun; 38(26):8271-9. PubMed ID: 10387072 [TBL] [Abstract][Full Text] [Related]
12. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors. Viviani VR; Neves DR; Amaral DT; Prado RA; Matsuhashi T; Hirano T Biochemistry; 2014 Aug; 53(32):5208-20. PubMed ID: 25025160 [TBL] [Abstract][Full Text] [Related]
13. Interaction of firefly luciferase with substrates and their analogs: a study using fluorescence spectroscopy methods. Ugarova NN Photochem Photobiol Sci; 2008 Feb; 7(2):218-27. PubMed ID: 18264590 [TBL] [Abstract][Full Text] [Related]
14. A route from darkness to light: emergence and evolution of luciferase activity in AMP-CoA-ligases inferred from a mealworm luciferase-like enzyme. Viviani VR; Prado RA; Neves DR; Kato D; Barbosa JA Biochemistry; 2013 Jun; 52(23):3963-73. PubMed ID: 23705763 [TBL] [Abstract][Full Text] [Related]
15. The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Said Alipour B; Hosseinkhani S; Ardestani SK; Moradi A Photochem Photobiol Sci; 2009 Jun; 8(6):847-55. PubMed ID: 19492113 [TBL] [Abstract][Full Text] [Related]
16. Functional conversion of fatty acyl-CoA synthetase to firefly luciferase by site-directed mutagenesis: a key substitution responsible for luminescence activity. Oba Y; Iida K; Inouye S FEBS Lett; 2009 Jun; 583(12):2004-8. PubMed ID: 19450587 [TBL] [Abstract][Full Text] [Related]
17. Effect of charge distribution in a flexible loop on the bioluminescence color of firefly luciferases. Moradi A; Hosseinkhani S; Naderi-Manesh H; Sadeghizadeh M; Alipour BS Biochemistry; 2009 Jan; 48(3):575-82. PubMed ID: 19119851 [TBL] [Abstract][Full Text] [Related]
18. Few substitutions affect the bioluminescence spectra of Phrixotrix (Coleoptera: Phengodidae) luciferases: a site-directed mutagenesis survey. Viviani VR; Arnoldi FG; Ogawa FT; Brochetto-Braga M Luminescence; 2007; 22(4):362-9. PubMed ID: 17471476 [TBL] [Abstract][Full Text] [Related]
19. Structure and spectroscopy of oxyluciferin, the light emitter of the firefly bioluminescence. Naumov P; Ozawa Y; Ohkubo K; Fukuzumi S J Am Chem Soc; 2009 Aug; 131(32):11590-605. PubMed ID: 19722653 [TBL] [Abstract][Full Text] [Related]
20. Mutagenesis evidence that the partial reactions of firefly bioluminescence are catalyzed by different conformations of the luciferase C-terminal domain. Branchini BR; Southworth TL; Murtiashaw MH; Wilkinson SR; Khattak NF; Rosenberg JC; Zimmer M Biochemistry; 2005 Feb; 44(5):1385-93. PubMed ID: 15683224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]