These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 12407907)
1. A new microbial assay for the toxicity detection of contaminated soils. Guerra R; Iacondini A; Abbondanzi F; Matteucci C; Bruzzi L Ann Chim; 2002 Sep; 92(9):847-54. PubMed ID: 12407907 [TBL] [Abstract][Full Text] [Related]
2. Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox assay. Abbondanzi F; Cachada A; Campisi T; Guerra R; Raccagni M; Iacondini A Chemosphere; 2003 Dec; 53(8):889-97. PubMed ID: 14505711 [TBL] [Abstract][Full Text] [Related]
3. Pseudomonas fluorescens JH 70-4 promotes pb stabilization and early seedling growth of sudan grass in contaminated mining site soil. Shim J; Babu AG; Velmurugan P; Shea PJ; Oh BT Environ Technol; 2014; 35(17-20):2589-96. PubMed ID: 25145215 [TBL] [Abstract][Full Text] [Related]
4. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. Khan WU; Ahmad SR; Yasin NA; Ali A; Ahmad A Int J Phytoremediation; 2017 Jun; 19(6):514-521. PubMed ID: 27819493 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
6. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
7. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms. Jeyalakshmi D; Kanmani S J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919 [TBL] [Abstract][Full Text] [Related]
8. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula. Paton GI; Viventsova E; Kumpene J; Wilson MJ; Weitz HJ; Dawson JJ Sci Total Environ; 2006 Feb; 355(1-3):106-17. PubMed ID: 15935449 [TBL] [Abstract][Full Text] [Related]
9. Changes of dehydrogenases activity in soils polluted with diesel fuel. Hawrot M; Nowak A; Kłódka D Pol J Microbiol; 2005; 54(1):49-53. PubMed ID: 16209095 [TBL] [Abstract][Full Text] [Related]
10. Copper interactions on arsenic bioavailability and phytotoxicity in soil. Kader M; Lamb DT; Wang L; Megharaj M; Naidu R Ecotoxicol Environ Saf; 2018 Feb; 148():738-746. PubMed ID: 29179146 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability and toxicity of soil particle-associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensor strains. Brandt KK; Holm PE; Nybroe O Environ Toxicol Chem; 2006 Jul; 25(7):1738-41. PubMed ID: 16833132 [TBL] [Abstract][Full Text] [Related]
12. Effects of long-term heavy metal contamination on soil microbial characteristics. Oliveira A; Pampulha ME J Biosci Bioeng; 2006 Sep; 102(3):157-61. PubMed ID: 17046527 [TBL] [Abstract][Full Text] [Related]
13. Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Chaperon S; Sauvé S Ecotoxicol Environ Saf; 2008 May; 70(1):1-9. PubMed ID: 18068781 [TBL] [Abstract][Full Text] [Related]
14. Influence of temperature and pH on the nonenzymatic reduction of triphenyltetrazolium chloride. Mahmoud NS; Ghaly AE Biotechnol Prog; 2004; 20(1):346-53. PubMed ID: 14763862 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of Staphylococcus sp. strain NBRIEAG-8 from arsenic contaminated site of West Bengal. Srivastava S; Verma PC; Singh A; Mishra M; Singh N; Sharma N; Singh N Appl Microbiol Biotechnol; 2012 Sep; 95(5):1275-91. PubMed ID: 22410743 [TBL] [Abstract][Full Text] [Related]
16. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima. Liu H; Guo S; Jiao K; Hou J; Xie H; Xu H J Hazard Mater; 2015 Aug; 294():121-7. PubMed ID: 25863026 [TBL] [Abstract][Full Text] [Related]
17. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
18. Influences of copper forms on the toxicity to microorganisms in soils. Kunito T; Saeki K; Oyaizu H; Matsumoto S Ecotoxicol Environ Saf; 1999 Oct; 44(2):174-81. PubMed ID: 10571464 [TBL] [Abstract][Full Text] [Related]
19. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China. Wu FY; Leung HM; Wu SC; Ye ZH; Wong MH Environ Pollut; 2009; 157(8-9):2394-404. PubMed ID: 19371990 [TBL] [Abstract][Full Text] [Related]
20. Usefulness of the sensitivity-resistance index to estimate the toxicity of copper on bacteria in copper-contaminated soils. Kunito T; Senoo K; Saeki K; Oyaizu H; Matsumoto S Ecotoxicol Environ Saf; 1999 Oct; 44(2):182-9. PubMed ID: 10571465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]