BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12408482)

  • 21. Characteristics of improved microwave interstitial antennas for local hyperthermia.
    Sathiaseelan V; Leybovich L; Emami B; Stauffer P; Straube W
    Int J Radiat Oncol Biol Phys; 1991 Mar; 20(3):531-9. PubMed ID: 1995539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preliminary findings from tests of a microwave applicator designed to treat Barrett's oesophagus.
    Meeson S; Reeves JW; Birch MJ; Swain CP; Ikeda K; Feakins RM
    Phys Med Biol; 2005 Oct; 50(19):4553-66. PubMed ID: 16177489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of six microwave antennas for hyperthermia treatment of cancer: sar results for single antennas and arrays.
    Ryan TP
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):403-13. PubMed ID: 2061117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Design and implementation of an improved invasive antenna for microwave hyperthermia].
    Xue Q; Sun B; Chen L; Wang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2010 Nov; 34(6):427-30. PubMed ID: 21360981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some aspects of optimization of an invasive microwave antenna for local hyperthermia treatment of cancer.
    de Sieyes DC; Douple EB; Strohbehn JW; Trembly BS
    Med Phys; 1981; 8(2):174-83. PubMed ID: 7322045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro and in vivo results of transcatheter microwave ablation using forward-firing tip antenna design.
    Liem LB; Mead RH; Shenasa M; Kernoff R
    Pacing Clin Electrophysiol; 1996 Nov; 19(11 Pt 2):2004-8. PubMed ID: 8945086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of microwave interstitial antennas in the phantom with varying cross-section.
    Leybovich LB; Kurup RG
    Int J Radiat Oncol Biol Phys; 1993 Jan; 25(1):105-12. PubMed ID: 8416865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The accuracy of temperature measurement from within an interstitial microwave antenna.
    Astrahan MA; Luxton G; Sapozink MD; Petrovich Z
    Int J Hyperthermia; 1988; 4(6):593-607. PubMed ID: 3171255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth.
    Denman DL; Foster AE; Lewis GC; Redmond KP; Elson HR; Breneman JC; Kereiakes JG; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Mar; 14(3):537-45. PubMed ID: 3343161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of antenna designs for percutaneous microwave ablation.
    Huang H; Zhang L; Moser MAJ; Zhang W; Zhang B
    Phys Med; 2021 Apr; 84():254-264. PubMed ID: 33773908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia.
    Stauffer PR; Rossetto F; Leoncini M; Gentilli GB
    IEEE Trans Biomed Eng; 1998 May; 45(5):605-13. PubMed ID: 9581059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave catheter ablation of myocardium in vitro. Assessment of the characteristics of tissue heating and injury.
    Whayne JG; Nath S; Haines DE
    Circulation; 1994 May; 89(5):2390-5. PubMed ID: 8181165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A robot-controlled microwave antenna system for uniform hyperthermia treatment of superficial tumours with arbitrary shape.
    Tennant A; Conway J; Anderson AP
    Int J Hyperthermia; 1990; 6(1):193-202. PubMed ID: 2299232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of intracavitary microwave applicators for the treatment of uterine cervix carcinoma.
    Li DJ; Chou CK; Luk KH; Wang JH; Xie CF; McDougall JA; Huang GZ
    Int J Hyperthermia; 1991; 7(5):693-701. PubMed ID: 1940505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in heating patterns of interstitial microwave antenna arrays at different insertion depths.
    Chan KW; Chou CK; McDougall JA; Luk KH; Vora NL; Forell BW
    Int J Hyperthermia; 1989; 5(4):499-507. PubMed ID: 2746053
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model.
    Brace CL; Laeseke PF; Sampson LA; Frey TM; van der Weide DW; Lee FT
    Radiology; 2007 Jul; 244(1):151-6. PubMed ID: 17581900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease.
    Jacobsen S; Stauffer PR; Neuman DG
    IEEE Trans Biomed Eng; 2000 Nov; 47(11):1500-9. PubMed ID: 11077744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.