These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 12408967)

  • 1. Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1.
    Landry JR; Mager DL
    Genomics; 2002 Nov; 80(5):499-508. PubMed ID: 12408967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative polyadenylation signals and promoters act in concert to control tissue-specific expression of the Opitz Syndrome gene MID1.
    Winter J; Kunath M; Roepcke S; Krause S; Schneider R; Schweiger S
    BMC Mol Biol; 2007 Nov; 8():105. PubMed ID: 18005432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FXY2/MID2, a gene related to the X-linked Opitz syndrome gene FXY/MID1, maps to Xq22 and encodes a FNIII domain-containing protein that associates with microtubules.
    Perry J; Short KM; Romer JT; Swift S; Cox TC; Ashworth A
    Genomics; 1999 Dec; 62(3):385-94. PubMed ID: 10644436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MID2, a homologue of the Opitz syndrome gene MID1: similarities in subcellular localization and differences in expression during development.
    Buchner G; Montini E; Andolfi G; Quaderi N; Cainarca S; Messali S; Bassi MT; Ballabio A; Meroni G; Franco B
    Hum Mol Genet; 1999 Aug; 8(8):1397-407. PubMed ID: 10400986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter.
    Landry JR; Rouhi A; Medstrand P; Mager DL
    Mol Biol Evol; 2002 Nov; 19(11):1934-42. PubMed ID: 12411602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duplication of the MID1 first exon in a patient with Opitz G/BBB syndrome.
    Winter J; Lehmann T; Suckow V; Kijas Z; Kulozik A; Kalscheuer V; Hamel B; Devriendt K; Opitz J; Lenzner S; Ropers HH; Schweiger S
    Hum Genet; 2003 Mar; 112(3):249-54. PubMed ID: 12545276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders.
    Short KM; Hopwood B; Yi Z; Cox TC
    BMC Cell Biol; 2002; 3():1. PubMed ID: 11806752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mouse Mid1 gene: implications for the pathogenesis of Opitz syndrome and the evolution of the mammalian pseudoautosomal region.
    Dal Zotto L; Quaderi NA; Elliott R; Lingerfelter PA; Carrel L; Valsecchi V; Montini E; Yen CH; Chapman V; Kalcheva I; Arrigo G; Zuffardi O; Thomas S; Willard HF; Ballabio A; Disteche CM; Rugarli EI
    Hum Mol Genet; 1998 Mar; 7(3):489-99. PubMed ID: 9467009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structure-function study of MID1 mutations associated with a mild Opitz phenotype.
    Mnayer L; Khuri S; Merheby HA; Meroni G; Elsas LJ
    Mol Genet Metab; 2006 Mar; 87(3):198-203. PubMed ID: 16378742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opitz G/BBB syndrome in Xp22: mutations in the MID1 gene cluster in the carboxy-terminal domain.
    Gaudenz K; Roessler E; Quaderi N; Franco B; Feldman G; Gasser DL; Wittwer B; Horst J; Montini E; Opitz JM; Ballabio A; Muenke M
    Am J Hum Genet; 1998 Sep; 63(3):703-10. PubMed ID: 9718340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New mutations in MID1 provide support for loss of function as the cause of X-linked Opitz syndrome.
    Cox TC; Allen LR; Cox LL; Hopwood B; Goodwin B; Haan E; Suthers GK
    Hum Mol Genet; 2000 Oct; 9(17):2553-62. PubMed ID: 11030761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mig12, a novel Opitz syndrome gene product partner, is expressed in the embryonic ventral midline and co-operates with Mid1 to bundle and stabilize microtubules.
    Berti C; Fontanella B; Ferrentino R; Meroni G
    BMC Cell Biol; 2004 Feb; 5():9. PubMed ID: 15070402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic organization and alternative transcripts of the human Connexin40 gene.
    Dupays L; Mazurais D; Rücker-Martin C; Calmels T; Bernot D; Cronier L; Malassiné A; Gros D; Théveniau-Ruissy M
    Gene; 2003 Feb; 305(1):79-90. PubMed ID: 12594044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative promoter usage and alternative splicing of the rat estrogen receptor alpha gene generate numerous mRNA variants with distinct 5'-ends.
    Ishii H; Kobayashi M; Sakuma Y
    J Steroid Biochem Mol Biol; 2010 Jan; 118(1-2):59-69. PubMed ID: 19833204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex rearrangement of the exon 6 genomic region among Opitz G/BBB Syndrome MID1 alterations.
    Migliore C; Athanasakis E; Dahoun S; Wonkam A; Lees M; Calabrese O; Connell F; Lynch SA; Izzi C; Pompilii E; Thakur S; van Maarle M; Wilson LC; Meroni G
    Eur J Med Genet; 2013 Aug; 56(8):404-10. PubMed ID: 23791568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental expression of alpha4 protein phosphatase regulatory subunit in tissues affected by Opitz syndrome.
    Everett AD; Brautigan DL
    Dev Dyn; 2002 Aug; 224(4):461-4. PubMed ID: 12203739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Opitz syndrome gene product, MID1, associates with microtubules.
    Schweiger S; Foerster J; Lehmann T; Suckow V; Muller YA; Walter G; Davies T; Porter H; van Bokhoven H; Lunt PW; Traub P; Ropers HH
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2794-9. PubMed ID: 10077590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterisation of the chick orthologue of the Opitz syndrome gene, Mid1, supports a conserved role in vertebrate development.
    Richman JM; Fu KK; Cox LL; Sibbons JP; Cox TC
    Int J Dev Biol; 2002; 46(4):441-8. PubMed ID: 12141430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mild phenotypes in a series of patients with Opitz GBBB syndrome with MID1 mutations.
    So J; Suckow V; Kijas Z; Kalscheuer V; Moser B; Winter J; Baars M; Firth H; Lunt P; Hamel B; Meinecke P; Moraine C; Odent S; Schinzel A; van der Smagt JJ; Devriendt K; Albrecht B; Gillessen-Kaesbach G; van der Burgt I; Petrij F; Faivre L; McGaughran J; McKenzie F; Opitz JM; Cox T; Schweiger S
    Am J Med Genet A; 2005 Jan; 132A(1):1-7. PubMed ID: 15558842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the MID1 protein function is fine-tuned by a complex pattern of alternative splicing.
    Winter J; Lehmann T; Krauss S; Trockenbacher A; Kijas Z; Foerster J; Suckow V; Yaspo ML; Kulozik A; Kalscheuer V; Schneider R; Schweiger S
    Hum Genet; 2004 May; 114(6):541-52. PubMed ID: 15057556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.