BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 12408984)

  • 1. pCLCA1 becomes a cAMP-dependent chloride conductance mediator in Caco-2 cells.
    Loewen ME; Bekar LK; Gabriel SE; Walz W; Forsyth GW
    Biochem Biophys Res Commun; 2002 Nov; 298(4):531-6. PubMed ID: 12408984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pCLCA1 lacks inherent chloride channel activity in an epithelial colon carcinoma cell line.
    Loewen ME; Bekar LK; Walz W; Forsyth GW; Gabriel SE
    Am J Physiol Gastrointest Liver Physiol; 2004 Jul; 287(1):G33-41. PubMed ID: 14988065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calcium-dependent chloride conductance mediator pCLCA1.
    Loewen ME; Gabriel SE; Forsyth GW
    Am J Physiol Cell Physiol; 2002 Aug; 283(2):C412-21. PubMed ID: 12107050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of cystic fibrosis transmembrane conductance regulator in human gallbladder epithelial cells.
    Dray-Charier N; Paul A; Veissiere D; Mergey M; Scoazec JY; Capeau J; Brahimi-Horn C; Housset C
    Lab Invest; 1995 Dec; 73(6):828-36. PubMed ID: 8558844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutations in cAMP-dependent protein kinase on chloride efflux in Caco-2 human colonic carcinoma cells.
    Krolczyk AJ; Bear CE; Lai PF; Schimmer BP
    J Cell Physiol; 1995 Jan; 162(1):64-73. PubMed ID: 7529238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning a chloride conductance mediator from the apical membrane of porcine ileal enterocytes.
    Gaspar KJ; Racette KJ; Gordon JR; Loewen ME; Forsyth GW
    Physiol Genomics; 2000 Aug; 3(2):101-11. PubMed ID: 11015605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of a CFTR-mediated chloride current in a rabbit corneal epithelial cell line.
    Al-Nakkash L; Reinach PS
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2364-70. PubMed ID: 11527951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of cAMP-dependent C1- currents in guinea-pig paneth cells without relevant evidence for CFTR expression.
    Tsumura T; Hazama A; Miyoshi T; Ueda S; Okada Y
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):765-77. PubMed ID: 9769420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of cystic fibrosis transmembrane conductance regulator in rat efferent duct epithelium.
    Leung GP; Gong XD; Cheung KH; Cheng-Chew SB; Wong PY
    Biol Reprod; 2001 May; 64(5):1509-15. PubMed ID: 11319159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CFTR-mediated chloride permeability is regulated by type III phosphodiesterases in airway epithelial cells.
    Kelley TJ; al-Nakkash L; Drumm ML
    Am J Respir Cell Mol Biol; 1995 Dec; 13(6):657-64. PubMed ID: 7576703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CLCA protein and chloride transport in canine retinal pigment epithelium.
    Loewen ME; Smith NK; Hamilton DL; Grahn BH; Forsyth GW
    Am J Physiol Cell Physiol; 2003 Nov; 285(5):C1314-21. PubMed ID: 12867361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cAMP-dependent chloride channels in DC1 immortalized rabbit distal tubule cells in culture.
    Rubera I; Tauc M; Verheecke-Mauze C; Bidet M; Poujeol C; Touret N; Cuiller B; Poujeol P
    Am J Physiol; 1999 Jan; 276(1):F104-21. PubMed ID: 9887086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of membrane chloride currents in rat bile duct epithelial cells.
    Fitz JG; Basavappa S; McGill J; Melhus O; Cohn JA
    J Clin Invest; 1993 Jan; 91(1):319-28. PubMed ID: 7678606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion secretion by the inner medullary collecting duct. Evidence for involvement of the cystic fibrosis transmembrane conductance regulator.
    Husted RF; Volk KA; Sigmund RD; Stokes JB
    J Clin Invest; 1995 Feb; 95(2):644-50. PubMed ID: 7532187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of a cAMP-stimulated chloride secretion in regenerating poorly differentiated airway epithelial cells by adenovirus-mediated CFTR gene transfer.
    Dupuit F; Chinet T; Zahm JM; Pierrot D; Hinnrasky J; Kaplan H; Bonnet N; Puchelle E
    Hum Gene Ther; 1997 Aug; 8(12):1439-50. PubMed ID: 9287144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line.
    Zhu JX; Zhang GH; Yang N; Rowlands DK; Wong HY; Tsang LL; Chung YW; Chan HC
    Eur J Pharmacol; 2005 Mar; 510(3):187-95. PubMed ID: 15763242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator.
    Rommens JM; Dho S; Bear CE; Kartner N; Kennedy D; Riordan JR; Tsui LC; Foskett JK
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7500-4. PubMed ID: 1715567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP-induced chloride transport in NCL-SG3 sweat gland cells.
    Mörk AC; von Euler A; Roomans GM; Ring A
    Acta Physiol Scand; 1996 May; 157(1):21-32. PubMed ID: 8735651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2.
    Mohammad-Panah R; Gyomorey K; Rommens J; Choudhury M; Li C; Wang Y; Bear CE
    J Biol Chem; 2001 Mar; 276(11):8306-13. PubMed ID: 11096079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.