BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 12409143)

  • 1. Possible degradative process of cholecystokinin analogs in rabbit jejunum brush-border membrane vesicles.
    Su SF; Amidon GL; Lee HJ
    Life Sci; 2002 Nov; 72(1):35-47. PubMed ID: 12409143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal metabolism and absorption of cholecystokinin analogs in rats.
    Su SF; Amidon GL; Lee HJ
    Biochem Biophys Res Commun; 2002 Apr; 292(3):632-8. PubMed ID: 11922613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral absorption of peptides: influence of pH and inhibitors on the intestinal hydrolysis of leu-enkephalin and analogues.
    Friedman DI; Amidon GL
    Pharm Res; 1991 Jan; 8(1):93-6. PubMed ID: 2014216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACE-like hydrolysis of gastrin analogs and CCK-8 by fundic mucosal cells of different species with release of the amidated C-terminal dipeptide.
    Dubreuil P; Fulcrand P; Rodriguez M; Laur J; Bali JP; Martinez J
    Biochim Biophys Acta; 1990 Jun; 1039(2):171-6. PubMed ID: 2163679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of the C-terminal octapeptide of cholecystokinin by rat kidney membranes: characterization of the cleavage by solubilized endopeptidase-24.11.
    Najdovski T; Collette N; Deschodt-Lanckman M
    Life Sci; 1985 Sep; 37(9):827-34. PubMed ID: 3897758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple cleavage sites of cholecystokinin heptapeptide by "enkephalinase".
    Durieux C; Charpentier B; Fellion E; Gacel G; Pelaprat D; Roques BP
    Peptides; 1985; 6(3):495-501. PubMed ID: 3906590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sucrose-derived scaffold for multimerization of bioactive peptides.
    Rao V; Alleti R; Xu L; Tafreshi NK; Morse DL; Gillies RJ; Mash EA
    Bioorg Med Chem; 2011 Nov; 19(21):6474-82. PubMed ID: 21940174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide.
    Dubreuil P; Fulcrand P; Rodriguez M; Fulcrand H; Laur J; Martinez J
    Biochem J; 1989 Aug; 262(1):125-30. PubMed ID: 2554881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Products of cholecystokinin (CCK)-octapeptide proteolysis interact with central CCK receptors.
    Steardo L; Knight M; Tamminga CA; Chase TN
    Neurosci Lett; 1985 Mar; 54(2-3):319-25. PubMed ID: 2986058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1H NMR conformational study of sulfated and non-sulfated cholecystokinin fragment CCK27-33: influence of the sulfate group on the peptide folding.
    Durieux C; Belleney J; Lallemand JY; Roques BP; Fournie-Zaluski MC
    Biochem Biophys Res Commun; 1983 Jul; 114(2):705-12. PubMed ID: 6882451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological effects of newly synthesized cholecystokinin analogs.
    Verspohl EJ; LaMura M
    Horm Res; 2000; 53(4):177-84. PubMed ID: 11044801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct requirements for activation at CCK-A and CCK-B/gastrin receptors: studies with a C-terminal hydrazide analogue of cholecystokinin tetrapeptide (30-33).
    Lin CW; Holladay MW; Barrett RW; Wolfram CA; Miller TR; Witte D; Kerwin JF; Wagenaar F; Nadzan AM
    Mol Pharmacol; 1989 Dec; 36(6):881-6. PubMed ID: 2601685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles.
    Schron CM; Washington C; Blitzer BL
    J Clin Invest; 1985 Nov; 76(5):2030-3. PubMed ID: 4056063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved stability of rabbit and rat intestinal brush border membrane vesicles using phospholipase inhibitors.
    Maenz DD; Chenu C; Bellemare F; Berteloot A
    Biochim Biophys Acta; 1991 Nov; 1069(2):250-8. PubMed ID: 1932065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of serotonin interactions with brush border membrane of rabbit jejunum enterocytes.
    Alcalde AI; Sorribas V; Rodriguez-Yoldi MJ; Lahuerta A
    Eur J Pharmacol; 2000 Sep; 403(1-2):9-15. PubMed ID: 10969138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of penicillin G uptake in human small intestinal brush border membrane vesicles.
    Poschet JF; Hammond SM; Fairclough PD
    Gut; 1999 May; 44(5):620-4. PubMed ID: 10205196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into the intestinal metabolism of [D-Ala1] peptide T amide: implication for oral drug delivery.
    Su SF; Amidon GL
    Biochim Biophys Acta; 1995 Aug; 1245(1):62-8. PubMed ID: 7654767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oleic acid uptake by jejunal and ileal rat brush border membrane vesicles.
    Prieto RM; Stremmel W; Sales C; Tur JA
    Eur J Med Res; 1996 Jan; 1(4):199-203. PubMed ID: 9386269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of a brush border membrane fatty acid binding protein in oleic acid uptake into rat and rabbit jejunal brush border membrane.
    Schoeller C; Keelan M; Mulvey G; Stremmel W; Thomson AB
    Clin Invest Med; 1995 Oct; 18(5):380-8. PubMed ID: 8529321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.