These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

700 related articles for article (PubMed ID: 12409198)

  • 1. Structural model of the transmembrane Fo rotary sector of H+-transporting ATP synthase derived by solution NMR and intersubunit cross-linking in situ.
    Fillingame RH; Dmitriev OY
    Biochim Biophys Acta; 2002 Oct; 1565(2):232-45. PubMed ID: 12409198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling H(+) transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor.
    Fillingame RH; Jiang W; Dmitriev OY
    J Exp Biol; 2000 Jan; 203(Pt 1):9-17. PubMed ID: 10600668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural interpretations of F(0) rotary function in the Escherichia coli F(1)F(0) ATP synthase.
    Fillingame RH; Jiang W; Dmitriev OY; Jones PC
    Biochim Biophys Acta; 2000 May; 1458(2-3):387-403. PubMed ID: 10838053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine.
    Fillingame RH
    J Exp Biol; 1997 Jan; 200(Pt 2):217-24. PubMed ID: 9050229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling proton movements to c-ring rotation in F(1)F(o) ATP synthase: aqueous access channels and helix rotations at the a-c interface.
    Fillingame RH; Angevine CM; Dmitriev OY
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):29-36. PubMed ID: 12206887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotor/Stator interactions of the epsilon subunit in Escherichia coli ATP synthase and implications for enzyme regulation.
    Bulygin VV; Duncan TM; Cross RL
    J Biol Chem; 2004 Aug; 279(34):35616-21. PubMed ID: 15199054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme.
    Jones PC; Hermolin J; Jiang W; Fillingame RH
    J Biol Chem; 2000 Oct; 275(40):31340-6. PubMed ID: 10882728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase.
    Fillingame RH; Steed PR
    Biochim Biophys Acta; 2014 Jul; 1837(7):1063-8. PubMed ID: 24650630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane.
    Angevine CM; Herold KA; Fillingame RH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13179-83. PubMed ID: 14595019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the subunit c oligomer in the F1Fo ATP synthase: model derived from solution structure of the monomer and cross-linking in the native enzyme.
    Dmitriev OY; Jones PC; Fillingame RH
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7785-90. PubMed ID: 10393899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase.
    Allegretti M; Klusch N; Mills DJ; Vonck J; Kühlbrandt W; Davies KM
    Nature; 2015 May; 521(7551):237-40. PubMed ID: 25707805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and epsilon subunit on the catalytic transition state.
    Peskova YB; Nakamoto RK
    Biochemistry; 2000 Sep; 39(38):11830-6. PubMed ID: 10995251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the gamma-epsilon complex of ATP synthase.
    Rodgers AJ; Wilce MC
    Nat Struct Biol; 2000 Nov; 7(11):1051-4. PubMed ID: 11062562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of Ala(20) --> Pro/Pro(64) --> Ala substituted subunit c of Escherichia coli ATP synthase in which the essential proline is switched between transmembrane helices.
    Dmitriev OY; Fillingame RH
    J Biol Chem; 2001 Jul; 276(29):27449-54. PubMed ID: 11331283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of coupling proton movements to c-ring rotation in ATP synthase.
    Fillingame RH; Angevine CM; Dmitriev OY
    FEBS Lett; 2003 Nov; 555(1):29-34. PubMed ID: 14630314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluidity of structure and swiveling of helices in the subunit c ring of Escherichia coli ATP synthase as revealed by cysteine-cysteine cross-linking.
    Vincent OD; Schwem BE; Steed PR; Jiang W; Fillingame RH
    J Biol Chem; 2007 Nov; 282(46):33788-33794. PubMed ID: 17893141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F(O) sector of Escherichia coli ATP synthase.
    Hutcheon ML; Duncan TM; Ngai H; Cross RL
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8519-24. PubMed ID: 11438702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes linked to proton translocation by subunit c of the ATP synthase.
    Rastogi VK; Girvin ME
    Nature; 1999 Nov; 402(6759):263-8. PubMed ID: 10580496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural features of Acetobacterium woodii F-ATP synthase reveal the importance of the unique subunit γ-loop in Na
    Bogdanović N; Trifunović D; Sielaff H; Westphal L; Bhushan S; Müller V; Grüber G
    FEBS J; 2019 May; 286(10):1894-1907. PubMed ID: 30791207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.