BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 12409460)

  • 1. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells.
    Sakamoto K; Hayashi A; Sakamoto A; Kiga D; Nakayama H; Soma A; Kobayashi T; Kitabatake M; Takio K; Saito K; Shirouzu M; Hirao I; Yokoyama S
    Nucleic Acids Res; 2002 Nov; 30(21):4692-9. PubMed ID: 12409460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system.
    Kiga D; Sakamoto K; Kodama K; Kigawa T; Matsuda T; Yabuki T; Shirouzu M; Harada Y; Nakayama H; Takio K; Hasegawa Y; Endo Y; Hirao I; Yokoyama S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9715-20. PubMed ID: 12097643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion.
    Iraha F; Oki K; Kobayashi T; Ohno S; Yokogawa T; Nishikawa K; Yokoyama S; Sakamoto K
    Nucleic Acids Res; 2010 Jun; 38(11):3682-91. PubMed ID: 20159998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-expression of yeast amber suppressor tRNATyr and tyrosyl-tRNA synthetase in Escherichia coli: possibility to expand the genetic code.
    Ohno S; Yokogawa T; Fujii I; Asahara H; Inokuchi H; Nishikawa K
    J Biochem; 1998 Dec; 124(6):1065-8. PubMed ID: 9832608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between transfer-RNAs by tyrosyl-tRNA synthetase.
    Bedouelle H; Guez-Ivanier V; Nageotte R
    Biochimie; 1993; 75(12):1099-108. PubMed ID: 8199245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis.
    Chow CM; RajBhandary UL
    J Biol Chem; 1993 Jun; 268(17):12855-63. PubMed ID: 8509419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction of modified and unmodified tRNA(Tyr) substrates with tyrosyl-tRNA synthetase (Bacillus stearothermophilus).
    Avis JM; Day AG; Garcia GA; Fersht AR
    Biochemistry; 1993 May; 32(20):5312-20. PubMed ID: 8499435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing the amino acid specificity of yeast tyrosyl-tRNA synthetase by genetic engineering.
    Ohno S; Yokogawa T; Nishikawa K
    J Biochem; 2001 Sep; 130(3):417-23. PubMed ID: 11530018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog.
    Oki K; Sakamoto K; Kobayashi T; Sasaki HM; Yokoyama S
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13298-303. PubMed ID: 18765802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Incorporation of Noncanonical Amino Acids by an Engineered tRNA(Tyr) Suppressor.
    Rauch BJ; Porter JJ; Mehl RA; Perona JJ
    Biochemistry; 2016 Jan; 55(3):618-28. PubMed ID: 26694948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general approach for the generation of orthogonal tRNAs.
    Wang L; Schultz PG
    Chem Biol; 2001 Sep; 8(9):883-90. PubMed ID: 11564556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase.
    Bedouelle H
    Biochimie; 1990 Aug; 72(8):589-98. PubMed ID: 2126463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient incorporation of unnatural amino acids into proteins in Escherichia coli.
    Ryu Y; Schultz PG
    Nat Methods; 2006 Apr; 3(4):263-5. PubMed ID: 16554830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion.
    Kobayashi T; Sakamoto K; Takimura T; Sekine R; Kelly VP; Kamata K; Nishimura S; Yokoyama S
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1366-71. PubMed ID: 15671170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine.
    Hamano-Takaku F; Iwama T; Saito-Yano S; Takaku K; Monden Y; Kitabatake M; Soll D; Nishimura S
    J Biol Chem; 2000 Dec; 275(51):40324-8. PubMed ID: 11006270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.
    Sharma G; First EA
    J Biol Chem; 2009 Feb; 284(7):4179-90. PubMed ID: 19098308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the genetic code of Escherichia coli.
    Wang L; Brock A; Herberich B; Schultz PG
    Science; 2001 Apr; 292(5516):498-500. PubMed ID: 11313494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic encoding of non-natural amino acids in Drosophila melanogaster Schneider 2 cells.
    Mukai T; Wakiyama M; Sakamoto K; Yokoyama S
    Protein Sci; 2010 Mar; 19(3):440-8. PubMed ID: 20052681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.