BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 12409460)

  • 21. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple system for expression of proteins containing 3-azidotyrosine at a pre-determined site in Escherichia coli.
    Ikeda-Boku A; Ohno S; Hibino Y; Yokogawa T; Hayashi N; Nishikawa K
    J Biochem; 2013 Mar; 153(3):317-26. PubMed ID: 23316081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine.
    Zhang Y; Wang L; Schultz PG; Wilson IA
    Protein Sci; 2005 May; 14(5):1340-9. PubMed ID: 15840835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crucial optimization of translational components towards efficient incorporation of unnatural amino acids into proteins in mammalian cells.
    Xiang L; Moncivais K; Jiang F; Willams B; Alfonta L; Zhang ZJ
    PLoS One; 2013; 8(7):e67333. PubMed ID: 23874413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved amino acids near the carboxy terminus of bacterial tyrosyl-tRNA synthetase are involved in tRNA and Tyr-AMP binding.
    Salazar JC; Zuñiga R; Lefimil C; Söll D; Orellana O
    FEBS Lett; 2001 Mar; 491(3):257-60. PubMed ID: 11240138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications.
    Baldridge KC; Jora M; Maranhao AC; Quick MM; Addepalli B; Brodbelt JS; Ellington AD; Limbach PA; Contreras LM
    ACS Synth Biol; 2018 May; 7(5):1315-1327. PubMed ID: 29694026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid.
    Hino N; Okazaki Y; Kobayashi T; Hayashi A; Sakamoto K; Yokoyama S
    Nat Methods; 2005 Mar; 2(3):201-6. PubMed ID: 15782189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase.
    Richardson CJ; First EA
    Biochemistry; 2016 May; 55(17):2526-37. PubMed ID: 27064538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of disordered regions in transferring tyrosine to its cognate tRNA.
    Srivastava A; Yesudhas D; Ramakrishnan C; Ahmad S; Gromiha MM
    Int J Biol Macromol; 2020 May; 150():705-713. PubMed ID: 32057853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectrophotometric assays for monitoring tRNA aminoacylation and aminoacyl-tRNA hydrolysis reactions.
    First EA; Richardson CJ
    Methods; 2017 Jan; 113():3-12. PubMed ID: 27780756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix.
    Iwaki J; Endo K; Ichikawa T; Suzuki R; Fujimoto Z; Momma M; Kuno A; Nishimura S; Hasegawa T
    J Biochem; 2012 Dec; 152(6):539-48. PubMed ID: 23024156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A transcription terminator in the 5' non-coding region of the tyrosyl tRNA synthetase gene from Bacillus stearothermophilus.
    Waye MM; Winter G
    Eur J Biochem; 1986 Aug; 158(3):505-10. PubMed ID: 3525162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altering the Enantioselectivity of Tyrosyl-tRNA Synthetase by Insertion of a Stereospecific Editing Domain.
    Richardson CJ; First EA
    Biochemistry; 2016 Mar; 55(10):1541-53. PubMed ID: 26890980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic incorporation of unnatural amino acids into proteins in mammalian cells.
    Liu W; Brock A; Chen S; Chen S; Schultz PG
    Nat Methods; 2007 Mar; 4(3):239-44. PubMed ID: 17322890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning and amplified expression of the tyrosyl-tRNA synthetase genes of Bacillus stearothermophilus and Escherichia coli.
    Barker DG
    Eur J Biochem; 1982 Jul; 125(2):357-60. PubMed ID: 6749496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pseudo-dimeric tyrosyl-tRNA synthetase of T. brucei aminoacylates cytosolic and mitochondrial tRNA
    Käser S; Glauser I; Rettig J; Schneider A
    Mol Biochem Parasitol; 2018 Apr; 221():52-55. PubMed ID: 29581012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disordered C-terminal domain of tyrosyl transfer-RNA synthetase: evidence for a folded state.
    Guez-Ivanier V; Bedouelle H
    J Mol Biol; 1996 Jan; 255(1):110-20. PubMed ID: 8568859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Incorporation of 3-azidotyrosine into proteins through engineering yeast tyrosyl-tRNA synthetase and its application to site-selective protein modification.
    Yokogawa T; Ohno S; Nishikawa K
    Methods Mol Biol; 2010; 607():227-42. PubMed ID: 20204861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of tyrosyl tRNA synthetase.
    Bedouelle H; Carter P; Waye MM; Winter G; Lowe DM; Wilkinson AJ; Fersht AR
    Biochimie; 1985; 67(7-8):737-43. PubMed ID: 3910110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms.
    Tsunoda M; Kusakabe Y; Tanaka N; Ohno S; Nakamura M; Senda T; Moriguchi T; Asai N; Sekine M; Yokogawa T; Nishikawa K; Nakamura KT
    Nucleic Acids Res; 2007; 35(13):4289-300. PubMed ID: 17576676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.