BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12409484)

  • 1. Adaptive responses of vertebrate neurons to hypoxia.
    Bickler PE; Donohoe PH
    J Exp Biol; 2002 Dec; 205(Pt 23):3579-86. PubMed ID: 12409484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular oxygen sensing need in CNS function: physiological and pathological implications.
    Acker T; Acker H
    J Exp Biol; 2004 Aug; 207(Pt 18):3171-88. PubMed ID: 15299039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular adaptations for survival during anoxia: lessons from lower vertebrates.
    Bickler PE; Donohoe PH; Buck LT
    Neuroscientist; 2002 Jun; 8(3):234-42. PubMed ID: 12061503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack.
    Hochachka PW; Buck LT; Doll CJ; Land SC
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9493-8. PubMed ID: 8790358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen sensing and signal transduction in metabolic defense against hypoxia: lessons from vertebrate facultative anaerobes.
    Hochachka PW; Land SC; Buck LT
    Comp Biochem Physiol A Physiol; 1997 Sep; 118(1):23-9. PubMed ID: 9243812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive responses of vertebrate neurons to anoxia--matching supply to demand.
    Buck LT; Pamenter ME
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):226-40. PubMed ID: 16621734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen sensing in the body.
    Lahiri S; Roy A; Baby SM; Hoshi T; Semenza GL; Prabhakar NR
    Prog Biophys Mol Biol; 2006 Jul; 91(3):249-86. PubMed ID: 16137743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism, origin, and evolution of anoxia tolerance in animals.
    Hochachka PW; Lutz PL
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Dec; 130(4):435-59. PubMed ID: 11691622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations.
    Bickler PE; Buck LT
    J Exp Biol; 1998 Apr; 201(Pt 8):1141-52. PubMed ID: 9510526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms.
    Buck LT
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Nov; 139(3):401-14. PubMed ID: 15544964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surviving hypoxia without really dying.
    Boutilier RG; St-Pierre J
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Aug; 126(4):481-90. PubMed ID: 10989340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular adaptive responses to low oxygen tension: apoptosis and resistance.
    Yun JK; McCormick TS; Judware R; Lapetina EG
    Neurochem Res; 1997 Apr; 22(4):517-21. PubMed ID: 9130264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1alpha.
    Hur E; Chang KY; Lee E; Lee SK; Park H
    Mol Pharmacol; 2001 May; 59(5):1216-24. PubMed ID: 11306706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of oxygen sensing by ion channels.
    López-Barneo J; del Toro R; Levitsky KL; Chiara MD; Ortega-Sáenz P
    J Appl Physiol (1985); 2004 Mar; 96(3):1187-95; discussion 1170-2. PubMed ID: 14766769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein kinases and the hypoxia-inducible factor-1, two switches in angiogenesis.
    Mazure NM; Brahimi-Horn MC; Pouysségur J
    Curr Pharm Des; 2003; 9(7):531-41. PubMed ID: 12570801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia and mitochondrial oxidative metabolism.
    Solaini G; Baracca A; Lenaz G; Sgarbi G
    Biochim Biophys Acta; 2010; 1797(6-7):1171-7. PubMed ID: 20153717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of NGF deprivation-induced death by low oxygen involves suppression of BIMEL and activation of HIF-1.
    Xie L; Johnson RS; Freeman RS
    J Cell Biol; 2005 Mar; 168(6):911-20. PubMed ID: 15767462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoflurane neuroprotection in hypoxic hippocampal slice cultures involves increases in intracellular Ca2+ and mitogen-activated protein kinases.
    Gray JJ; Bickler PE; Fahlman CS; Zhan X; Schuyler JA
    Anesthesiology; 2005 Mar; 102(3):606-15. PubMed ID: 15731600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O(2) deprivation inhibits Ca(2+)-activated K(+) channels via cytosolic factors in mice neocortical neurons.
    Liu H; Moczydlowski E; Haddad GG
    J Clin Invest; 1999 Sep; 104(5):577-88. PubMed ID: 10487772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart.
    Huang Y; Hickey RP; Yeh JL; Liu D; Dadak A; Young LH; Johnson RS; Giordano FJ
    FASEB J; 2004 Jul; 18(10):1138-40. PubMed ID: 15132980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.