BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12409618)

  • 1. Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective.
    O'Neill P; Stevens DL; Garman EF
    J Synchrotron Radiat; 2002 Nov; 9(Pt 6):329-32. PubMed ID: 12409618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A beginner's guide to radiation damage.
    Holton JM
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):133-42. PubMed ID: 19240325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bragg coherent diffraction imaging and metrics for radiation damage in protein micro-crystallography.
    Coughlan HD; Darmanin C; Kirkwood HJ; Phillips NW; Hoxley D; Clark JN; Vine DJ; Hofmann F; Harder RJ; Maxey E; Abbey B
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):83-94. PubMed ID: 28009549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can radiation damage to protein crystals be reduced using small-molecule compounds?
    Kmetko J; Warkentin M; Englich U; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2011 Oct; 67(Pt 10):881-93. PubMed ID: 21931220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.
    Warkentin M; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2010 Oct; 66(Pt 10):1092-100. PubMed ID: 20944242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global radiation damage: temperature dependence, time dependence and how to outrun it.
    Warkentin M; Hopkins JB; Badeau R; Mulichak AM; Keefe LJ; Thorne RE
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):7-13. PubMed ID: 23254651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Which strategy for a protein crystallization project?
    Kundrot CE
    Cell Mol Life Sci; 2004 Mar; 61(5):525-536. PubMed ID: 15004692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. To scavenge or not to scavenge, that is STILL the question.
    Allan EG; Kander MC; Carmichael I; Garman EF
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):23-36. PubMed ID: 23254653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV LED lighting for automated crystal centring.
    Chavas LM; Yamada Y; Hiraki M; Igarashi N; Matsugaki N; Wakatsuki S
    J Synchrotron Radiat; 2011 Jan; 18(1):11-5. PubMed ID: 21169682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy dependence of site-specific radiation damage in protein crystals.
    Homer C; Cooper L; Gonzalez A
    J Synchrotron Radiat; 2011 May; 18(Pt 3):338-45. PubMed ID: 21525641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imperfection and radiation damage in protein crystals studied with coherent radiation.
    Nave C; Sutton G; Evans G; Owen R; Rau C; Robinson I; Stuart DI
    J Synchrotron Radiat; 2016 Jan; 23(1):228-37. PubMed ID: 26698068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallography: Sources of inspiration.
    McSweeney S; Fromme P
    Nature; 2014 Jan; 505(7485):620-1. PubMed ID: 24476881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crystallography radiation damage research: what's new?
    Garman EF; Weik M
    J Synchrotron Radiat; 2011 May; 18(Pt 3):313-7. PubMed ID: 21525638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying and avoiding radiation damage in macromolecular crystallography.
    Shelley KL; Garman EF
    Acta Crystallogr D Struct Biol; 2024 May; 80(Pt 5):314-327. PubMed ID: 38700059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the prospect of XAFS experiments of metalloproteins under in vivo conditions at Indus-2 synchrotron facility, India.
    Lahiri D; Agrawal R; Chandravanshi K; Rajput P; Agrawal A; Dwivedi A; Makde RD; Jha SN; Garg N
    J Synchrotron Radiat; 2023 Mar; 30(Pt 2):449-456. PubMed ID: 36891859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping X-ray Radiation Damage from Homolytic Se-C Bond Cleavage in BnSeSeBn Crystals (Bn=benzyl, CH
    Schürmann CJ; Teuteberg TL; Stückl AC; Ruth PN; Hecker F; Herbst-Irmer R; Mata RA; Stalke D
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202203665. PubMed ID: 35417063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the reduction in the effects of radiation damage to two-dimensional crystals of organic and biological molecules at liquid-helium temperature.
    Naydenova K; Kamegawa A; Peet MJ; Henderson R; Fujiyoshi Y; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113512. PubMed ID: 35367901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A SAXS-based approach to rationally evaluate radical scavengers - toward eliminating radiation damage in solution and crystallographic studies.
    Stachowski TR; Snell ME; Snell EH
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1309-1320. PubMed ID: 34475280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma irradiation-mediated inactivation of enveloped viruses with conservation of genome integrity: Potential application for SARS-CoV-2 inactivated vaccine development.
    Abolaban FA; Djouider FM
    Open Life Sci; 2021; 16(1):558-570. PubMed ID: 34131589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE-3D.
    Dickerson JL; Garman EF
    Protein Sci; 2021 Jan; 30(1):8-19. PubMed ID: 32734633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.