BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 12409625)

  • 1. Experiments testing the abatement of radiation damage in D-xylose isomerase crystals with cryogenic helium.
    Hanson BL; Harp JM; Kirschbaum K; Schall CA; DeWitt K; Howard A; Pinkerton AA; Bunick GJ
    J Synchrotron Radiat; 2002 Nov; 9(Pt 6):375-81. PubMed ID: 12409625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic (<20 K) helium cooling mitigates radiation damage to protein crystals.
    Chinte U; Shah B; Chen YS; Pinkerton AA; Schall CA; Hanson BL
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):486-92. PubMed ID: 17372353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New techniques in macromolecular cryocrystallography: macromolecular crystal annealing and cryogenic helium.
    Hanson BL; Schall CA; Bunick GJ
    J Struct Biol; 2003 Apr; 142(1):77-87. PubMed ID: 12718921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study.
    Meents A; Wagner A; Schneider R; Pradervand C; Pohl E; Schulze-Briese C
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):302-9. PubMed ID: 17327667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating.
    Kriminski S; Kazmierczak M; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2003 Apr; 59(Pt 4):697-708. PubMed ID: 12657789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography.
    Murray J; Garman E
    J Synchrotron Radiat; 2002 Nov; 9(Pt 6):347-54. PubMed ID: 12409621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing crystal volume for neutron diffraction: D-xylose isomerase.
    Snell EH; van der Woerd MJ; Damon M; Judge RA; Myles DA; Meilleur F
    Eur Biophys J; 2006 Sep; 35(7):621-32. PubMed ID: 16724195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-pressure cooling of protein crystals without cryoprotectants.
    Kim CU; Kapfer R; Gruner SM
    Acta Crystallogr D Biol Crystallogr; 2005 Jul; 61(Pt 7):881-90. PubMed ID: 15983410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization and preliminary X-ray diffraction studies of xylose isomerase from Thermoanaerobacterium thermosulfurigenes strain 4B.
    Lloyd LF; Gallay OS; Akins J; Zeikus JG
    J Mol Biol; 1994 Jul; 240(5):504-6. PubMed ID: 8046754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermostable xylose isomerase from Thermus caldophilus: biochemical characterization, crystallization and preliminary X-ray analysis.
    Chang C; Song HK; Park BC; Lee DS; Suh SW
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):294-6. PubMed ID: 10089429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures.
    Huang CY; Olieric V; Ma P; Howe N; Vogeley L; Liu X; Warshamanage R; Weinert T; Panepucci E; Kobilka B; Diederichs K; Wang M; Caffrey M
    Acta Crystallogr D Struct Biol; 2016 Jan; 72(Pt 1):93-112. PubMed ID: 26894538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both.
    Taberman H; Bury CS; van der Woerd MJ; Snell EH; Garman EF
    J Synchrotron Radiat; 2019 Jul; 26(Pt 4):931-944. PubMed ID: 31274415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the choice of an optimal wavelength in macromolecular crystallography.
    Teplyakov A; Oliva G; Polikarpov I
    Acta Crystallogr D Biol Crystallogr; 1998 Jul; 54(Pt 4):610-4. PubMed ID: 9761856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the reduction in the effects of radiation damage to two-dimensional crystals of organic and biological molecules at liquid-helium temperature.
    Naydenova K; Kamegawa A; Peet MJ; Henderson R; Fujiyoshi Y; Russo CJ
    Ultramicroscopy; 2022 Jul; 237():113512. PubMed ID: 35367901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crystal annealing: overcoming increased mosaicity associated with cryocrystallography.
    Harp JM; Timm DE; Bunick GJ
    Acta Crystallogr D Biol Crystallogr; 1998 Jul; 54(Pt 4):622-8. PubMed ID: 9761858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation damage of protein crystals at cryogenic temperatures between 40 K and 150 K.
    Teng TY; Moffat K
    J Synchrotron Radiat; 2002 Jul; 9(Pt 4):198-201. PubMed ID: 12091725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures.
    Pflugrath JW
    Methods; 2004 Nov; 34(3):415-23. PubMed ID: 15325658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of oscillatory rocking curve by dynamical diffraction in protein crystals.
    Suzuki R; Koizumi H; Hirano K; Kumasaka T; Kojima K; Tachibana M
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3634-3639. PubMed ID: 29563230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.
    Botha S; Nass K; Barends TR; Kabsch W; Latz B; Dworkowski F; Foucar L; Panepucci E; Wang M; Shoeman RL; Schlichting I; Doak RB
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):387-97. PubMed ID: 25664750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulations of solute transport in xylose isomerase crystals.
    Malek K; Coppens MO
    J Phys Chem B; 2008 Feb; 112(5):1549-54. PubMed ID: 18198855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.