These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12409810)

  • 1. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms.
    Baldwin KM; Haddad F
    Am J Phys Med Rehabil; 2002 Nov; 81(11 Suppl):S40-51. PubMed ID: 12409810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of contractile protein gene expression in unloaded mouse skeletal muscle.
    Criswell DS; Carson JA; Booth FW
    J Gravit Physiol; 1996 Sep; 3(2):58-60. PubMed ID: 11540283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle.
    Baldwin KM; Haddad F
    J Appl Physiol (1985); 2001 Jan; 90(1):345-57. PubMed ID: 11133928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atrophy responses to muscle inactivity. II. Molecular markers of protein deficits.
    Haddad F; Roy RR; Zhong H; Edgerton VR; Baldwin KM
    J Appl Physiol (1985); 2003 Aug; 95(2):791-802. PubMed ID: 12716877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.
    Baldwin KM; Caiozzo VJ; Haddad F; Baker MJ; Herrick RE
    J Gravit Physiol; 1994 May; 1(1):P8-11. PubMed ID: 11538774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular and molecular events controlling skeletal muscle mass in response to altered use.
    Favier FB; Benoit H; Freyssenet D
    Pflugers Arch; 2008 Jun; 456(3):587-600. PubMed ID: 18193272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin heavy chain composition in normal and atrophic equine laryngeal muscle.
    Adreani CM; Li ZB; Lehar M; Southwood LL; Habecker PL; Flint PW; Parente EJ
    Vet Pathol; 2006 Nov; 43(6):881-9. PubMed ID: 17099144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of altered loading states on muscle plasticity: what have we learned from rodents?
    Baldwin KM
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S101-6. PubMed ID: 8897413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Change of myosin heavy chain isoform expression and histocytochemical findings in skeletal muscular atrophy due to simulated weightlessness by hindlimb tenotomy].
    Hashimoto K; Yamazaki S; Ogawa S; Senke H; Taguchi S
    Nihon Seirigaku Zasshi; 2001; 63(10):252-60. PubMed ID: 11871121
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in efficiency and myosin expression in the small-muscle phenotype of mice selectively bred for high voluntary running activity.
    McGillivray DG; Garland T; Dlugosz EM; Chappell MA; Syme DA
    J Exp Biol; 2009 Apr; 212(Pt 7):977-85. PubMed ID: 19282494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training.
    Short KR; Vittone JL; Bigelow ML; Proctor DN; Coenen-Schimke JM; Rys P; Nair KS
    J Appl Physiol (1985); 2005 Jul; 99(1):95-102. PubMed ID: 15746299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of space flight and thyroid state on somatic and skeletal muscle growth and myosin heavy chain expression on neonatal rodents.
    Adams GR; Haddad F; Baldwin KM
    J Gravit Physiol; 2000 Jul; 7(2):P15-8. PubMed ID: 12697544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining.
    Andersen LL; Andersen JL; Magnusson SP; Suetta C; Madsen JL; Christensen LR; Aagaard P
    J Appl Physiol (1985); 2005 Jul; 99(1):87-94. PubMed ID: 15731398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leucine induces myofibrillar protein accretion in cultured skeletal muscle through mTOR dependent and -independent control of myosin heavy chain mRNA levels.
    Haegens A; Schols AM; van Essen AL; van Loon LJ; Langen RC
    Mol Nutr Food Res; 2012 May; 56(5):741-52. PubMed ID: 22648621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoblast models of skeletal muscle hypertrophy and atrophy.
    Sharples AP; Stewart CE
    Curr Opin Clin Nutr Metab Care; 2011 May; 14(3):230-6. PubMed ID: 21460719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered content of AMP-activated protein kinase isoforms in skeletal muscle from spinal cord injured subjects.
    Kostovski E; Boon H; Hjeltnes N; Lundell LS; Ahlsén M; Chibalin AV; Krook A; Iversen PO; Widegren U
    Am J Physiol Endocrinol Metab; 2013 Nov; 305(9):E1071-80. PubMed ID: 24022865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular and molecular responses to increased skeletal muscle loading after irradiation.
    Adams GR; Caiozzo VJ; Haddad F; Baldwin KM
    Am J Physiol Cell Physiol; 2002 Oct; 283(4):C1182-95. PubMed ID: 12225982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of myosin heavy chain mRNA and protein isoforms in four functionally diverse rabbit skeletal muscles during pre- and postnatal development.
    McKoy G; Léger ME; Bacou F; Goldspink G
    Dev Dyn; 1998 Mar; 211(3):193-203. PubMed ID: 9520107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential adaptation to weightlessness of functional and structural characteristics of rat hindlimb muscles.
    Stevens L; Picquet F; Catinot MP; Mounier Y
    J Gravit Physiol; 1996 Sep; 3(2):54-7. PubMed ID: 11540282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin heavy chain isoform content and energy metabolism can be uncoupled in pig skeletal muscle.
    Park SK; Gunawan AM; Scheffler TL; Grant AL; Gerrard DE
    J Anim Sci; 2009 Feb; 87(2):522-31. PubMed ID: 18820156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.