These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 12410306)

  • 1. High tensile ductility in a nanostructured metal.
    Wang Y; Chen M; Zhou F; Ma E
    Nature; 2002 Oct; 419(6910):912-5. PubMed ID: 12410306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique mechanical properties of nanostructured metals.
    Tsuji N
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3765-70. PubMed ID: 18047054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper.
    Fang TH; Li WL; Tao NR; Lu K
    Science; 2011 Mar; 331(6024):1587-90. PubMed ID: 21330487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High Tensile Ductility and Strength in Dual-phase Bimodal Steel through Stationary Friction Stir Processing.
    Arora HS; Ayyagari A; Saini J; Selvam K; Riyadh S; Pole M; Grewal HS; Mukherjee S
    Sci Rep; 2019 Feb; 9(1):1972. PubMed ID: 30760825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility.
    Wu X; Yuan F; Yang M; Jiang P; Zhang C; Chen L; Wei Y; Ma E
    Sci Rep; 2015 Jun; 5():11728. PubMed ID: 26122728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniting tensile ductility with ultrahigh strength via composition undulation.
    Li H; Zong H; Li S; Jin S; Chen Y; Cabral MJ; Chen B; Huang Q; Chen Y; Ren Y; Yu K; Han S; Ding X; Sha G; Lian J; Liao X; Ma E; Sun J
    Nature; 2022 Apr; 604(7905):273-279. PubMed ID: 35418634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity.
    He G; Eckert J; Löser W; Schultz L
    Nat Mater; 2003 Jan; 2(1):33-7. PubMed ID: 12652670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility.
    Wu X; Yang M; Yuan F; Wu G; Wei Y; Huang X; Zhu Y
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):14501-5. PubMed ID: 26554017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hardening by annealing and softening by deformation in nanostructured metals.
    Huang X; Hansen N; Tsuji N
    Science; 2006 Apr; 312(5771):249-51. PubMed ID: 16614217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of pseudoelasticity and ductility of Beta III titanium alloy--application to orthodontic wires.
    Laheurte P; Eberhardt A; Philippe M; Deblock L
    Eur J Orthod; 2007 Feb; 29(1):8-13. PubMed ID: 16954181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving large uniform tensile ductility in nanocrystalline metals.
    Wang YM; Ott RT; Hamza AV; Besser MF; Almer J; Kramer MJ
    Phys Rev Lett; 2010 Nov; 105(21):215502. PubMed ID: 21231320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation.
    Hasnaoui A; Van Swygenhoven H; Derlet PM
    Science; 2003 Jun; 300(5625):1550-2. PubMed ID: 12791986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalloying ultrafine grained Al alloys with enhanced ductility.
    Jiang L; Li JK; Cheng PM; Liu G; Wang RH; Chen BA; Zhang JY; Sun J; Yang MX; Yang G
    Sci Rep; 2014 Jan; 4():3605. PubMed ID: 24398915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength.
    Yang M; Yan D; Yuan F; Jiang P; Ma E; Wu X
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7224-7229. PubMed ID: 29946032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic deformation mechanisms in a severely deformed Fe-Ni-Al-C alloy with superior tensile properties.
    Ma Y; Yang M; Jiang P; Yuan F; Wu X
    Sci Rep; 2017 Nov; 7(1):15619. PubMed ID: 29142214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plastic deformation with reversible peak broadening in nanocrystalline nickel.
    Budrovic Z; Van Swygenhoven H; Derlet PM; Van Petegem S; Schmitt B
    Science; 2004 Apr; 304(5668):273-6. PubMed ID: 15073373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.