BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12410848)

  • 21. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease.
    Miranda-Díaz AG; Pazarín-Villaseñor L; Yanowsky-Escatell FG; Andrade-Sierra J
    J Diabetes Res; 2016; 2016():7047238. PubMed ID: 27525285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vasoactive renal factors and the progression of diabetic nephropathy.
    Wassef L; Langham RG; Kelly DJ
    Curr Pharm Des; 2004; 10(27):3373-84. PubMed ID: 15544522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The renin-angiotensin system and diabetic nephropathy.
    Gurley SB; Coffman TM
    Semin Nephrol; 2007 Mar; 27(2):144-52. PubMed ID: 17418683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced glycation end products (AGEs) increase renal lipid accumulation: a pathogenic factor of diabetic nephropathy (DN).
    Yuan Y; Sun H; Sun Z
    Lipids Health Dis; 2017 Jun; 16(1):126. PubMed ID: 28659153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vitamin D and diabetic nephropathy.
    Li YC
    Curr Diab Rep; 2008 Dec; 8(6):464-9. PubMed ID: 18990303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin D improves diabetic nephropathy in rats by inhibiting renin and relieving oxidative stress.
    Deng X; Cheng J; Shen M
    J Endocrinol Invest; 2016 Jun; 39(6):657-66. PubMed ID: 26691308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of growth factors in diabetic kidney disease.
    Chiarelli F; Gaspari S; Marcovecchio ML
    Horm Metab Res; 2009 Aug; 41(8):585-93. PubMed ID: 19452424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trientine and renin-angiotensin system blockade ameliorate progression of glomerular morphology in hypertensive experimental diabetic nephropathy.
    Moya-Olano L; Milne HM; Robinson JM; Hill JV; Frampton CM; Abbott HF; Turner R; Kettle AJ; Endre ZH
    Pathol Int; 2011 Nov; 61(11):652-61. PubMed ID: 22029676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pathophysiology of diabetic nephropathy.
    Cooper ME; Gilbert RE; Epstein M
    Metabolism; 1998 Dec; 47(12 Suppl 1):3-6. PubMed ID: 9867062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of advanced glycation end products in diabetic nephropathy.
    Forbes JM; Cooper ME; Oldfield MD; Thomas MC
    J Am Soc Nephrol; 2003 Aug; 14(8 Suppl 3):S254-8. PubMed ID: 12874442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Akt pathways, compared to α-lipoic acid.
    Mao ZM; Shen SM; Wan YG; Sun W; Chen HL; Huang MM; Yang JJ; Wu W; Tang HT; Tang RM
    J Ethnopharmacol; 2015 Sep; 173():256-65. PubMed ID: 26226437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology.
    Wolf G
    Eur J Clin Invest; 2004 Dec; 34(12):785-96. PubMed ID: 15606719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of a local renin angiotensin system in podocytes by glucose.
    Durvasula RV; Shankland SJ
    Am J Physiol Renal Physiol; 2008 Apr; 294(4):F830-9. PubMed ID: 18216149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy.
    Kumar Pasupulati A; Chitra PS; Reddy GB
    Biomol Concepts; 2016 Dec; 7(5-6):293-309. PubMed ID: 27816946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signaling pathways in diabetic nephropathy.
    Kawanami D; Matoba K; Utsunomiya K
    Histol Histopathol; 2016 Oct; 31(10):1059-67. PubMed ID: 27094540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Meprin-alpha in chronic diabetic nephropathy: interaction with the renin-angiotensin axis.
    Mathew R; Futterweit S; Valderrama E; Tarectecan AA; Bylander JE; Bond JS; Trachtman H
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F911-21. PubMed ID: 15942051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Reassessment of the Pathophysiology of Progressive Cardiorenal Disorders.
    Re RN
    Med Clin North Am; 2017 Jan; 101(1):103-115. PubMed ID: 27884222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Interplay of Renin-Angiotensin System and Toll-Like Receptor 4 in the Inflammation of Diabetic Nephropathy.
    Feng Q; Liu D; Lu Y; Liu Z
    J Immunol Res; 2020; 2020():6193407. PubMed ID: 32411800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-protein diet supplemented with ketoacids ameliorates proteinuria in 3/4 nephrectomised rats by directly inhibiting the intrarenal renin-angiotensin system.
    Zhang JY; Yin Y; Ni L; Long Q; You L; Zhang Q; Lin SY; Chen J
    Br J Nutr; 2016 Nov; 116(9):1491-1501. PubMed ID: 27753426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Glimpse of the Mechanisms Related to Renal Fibrosis in Diabetic Nephropathy.
    Zeng LF; Xiao Y; Sun L
    Adv Exp Med Biol; 2019; 1165():49-79. PubMed ID: 31399961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.