BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12410848)

  • 41. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions.
    Sanajou D; Ghorbani Haghjo A; Argani H; Aslani S
    Eur J Pharmacol; 2018 Aug; 833():158-164. PubMed ID: 29883668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses.
    Chen J; Hou XF; Wang G; Zhong QX; Liu Y; Qiu HH; Yang N; Gu JF; Wang CF; Zhang L; Song J; Huang LQ; Jia XB; Zhang MH; Feng L
    J Ethnopharmacol; 2016 Dec; 193():433-444. PubMed ID: 27664441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiologic actions and molecular expression of the renin-angiotensin system in the diabetic rat.
    Anderson S
    Miner Electrolyte Metab; 1998; 24(6):406-11. PubMed ID: 9930380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.
    Huang K; Huang J; Xie X; Wang S; Chen C; Shen X; Liu P; Huang H
    Free Radic Biol Med; 2013 Dec; 65():528-540. PubMed ID: 23891678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention.
    Yamagishi S; Fukami K; Ueda S; Okuda S
    Curr Drug Targets; 2007 Aug; 8(8):952-9. PubMed ID: 17691932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beneficial effects of β-conglycinin on renal function and nephrin expression in early streptozotocin-induced diabetic nephropathy rats.
    Yang HY; Wu LY; Yeh WJ; Chen JR
    Br J Nutr; 2014 Jan; 111(1):78-85. PubMed ID: 23803175
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic markers of increased susceptibility to diabetic nephropathy.
    Doria A
    Horm Res; 1998; 50 Suppl 1():6-11. PubMed ID: 9676990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overactive cannabinoid 1 receptor in podocytes drives type 2 diabetic nephropathy.
    Jourdan T; Szanda G; Rosenberg AZ; Tam J; Earley BJ; Godlewski G; Cinar R; Liu Z; Liu J; Ju C; Pacher P; Kunos G
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):E5420-8. PubMed ID: 25422468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitamin D protection from rat diabetic nephropathy is partly mediated through Klotho expression and renin-angiotensin inhibition.
    Eltablawy N; Ashour H; Rashed LA; Hamza WM
    Arch Physiol Biochem; 2018 Dec; 124(5):461-467. PubMed ID: 29308676
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Telmisartan attenuates oxidative stress and renal fibrosis in streptozotocin induced diabetic mice with the alteration of angiotensin-(1-7) mas receptor expression associated with its PPAR-γ agonist action.
    Lakshmanan AP; Watanabe K; Thandavarayan RA; Sari FR; Harima M; Giridharan VV; Soetikno V; Kodama M; Aizawa Y
    Free Radic Res; 2011 May; 45(5):575-84. PubMed ID: 21381899
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advanced glycation end products.
    Thomas MC
    Contrib Nephrol; 2011; 170():66-74. PubMed ID: 21659759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [The effect of angiotensin-converting enzyme inhibitors on the progression of chronic renal failure].
    Bernadet-Monrozies P; Rostaing L; Kamar N; Durand D
    Presse Med; 2002 Nov; 31(36):1714-20. PubMed ID: 12467154
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The evolving story of the RAAS in hypertension, diabetes and CV disease: moving from macrovascular to microvascular targets.
    Steckelings UM; Rompe F; Kaschina E; Unger T
    Fundam Clin Pharmacol; 2009 Dec; 23(6):693-703. PubMed ID: 19817870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The locally activated renin-angiotensin system is involved in albumin permeability in glomerular endothelial cells under high glucose conditions.
    Paeng J; Park J; Um JE; Nam BY; Kang HY; Kim S; Oh HJ; Park JT; Han SH; Ryu DR; Yoo TH; Kang SW
    Nephrol Dial Transplant; 2017 Jan; 32(1):61-72. PubMed ID: 27358275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Angiotensin blockade in type 2 diabetic renal disease.
    Ruilope LM; Luño J
    Kidney Int Suppl; 2002 Dec; (82):S61-3. PubMed ID: 12410857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy.
    Lu CC; Ma KL; Ruan XZ; Liu BC
    Int J Med Sci; 2018; 15(8):816-822. PubMed ID: 30008592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review: Endothelial-myofibroblast transition, a new player in diabetic renal fibrosis.
    Li J; Bertram JF
    Nephrology (Carlton); 2010 Aug; 15(5):507-12. PubMed ID: 20649869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Effects of Shenkangwan on renal expressions of angiotensin II and its type I receptor in rats with early diabetic nephropathy].
    Long HB; Niu HX; Li XY; Xu ZZ; Zhang H; Zhong J; Wei LB
    Nan Fang Yi Ke Da Xue Xue Bao; 2010 Apr; 30(4):805-9. PubMed ID: 20423855
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy.
    Gellai R; Hodrea J; Lenart L; Hosszu A; Koszegi S; Balogh D; Ver A; Banki NF; Fulop N; Molnar A; Wagner L; Vannay A; Szabo AJ; Fekete A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1172-F1181. PubMed ID: 27029430
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pathogenesis of diabetic nephropathy.
    Raptis AE; Viberti G
    Exp Clin Endocrinol Diabetes; 2001; 109 Suppl 2():S424-37. PubMed ID: 11460589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.