These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12410848)

  • 61. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the "handle" region for nonproteolytic activation of prorenin.
    Ichihara A; Hayashi M; Kaneshiro Y; Suzuki F; Nakagawa T; Tada Y; Koura Y; Nishiyama A; Okada H; Uddin MN; Nabi AH; Ishida Y; Inagami T; Saruta T
    J Clin Invest; 2004 Oct; 114(8):1128-35. PubMed ID: 15489960
    [TBL] [Abstract][Full Text] [Related]  

  • 62. High levels of circulating TNFR1 increase the risk of all-cause mortality and progression of renal disease in type 2 diabetic nephropathy.
    Fernández-Juárez G; Villacorta Perez J; Luño Fernández JL; Martinez-Martinez E; Cachofeiro V; Barrio Lucia V; Tato Ribera AM; Mendez Abreu A; Cordon A; Oliva Dominguez JA; Praga Terente M
    Nephrology (Carlton); 2017 May; 22(5):354-360. PubMed ID: 27003829
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The emerging role of angiotensin-converting enzyme-2 in the kidney.
    Burns KD
    Curr Opin Nephrol Hypertens; 2007 Mar; 16(2):116-21. PubMed ID: 17293686
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy.
    Cooper ME
    Diabetologia; 2001 Nov; 44(11):1957-72. PubMed ID: 11719827
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Diabetic nephropathy: A twisted thread to unravel.
    Dagar N; Das P; Bisht P; Taraphdar AK; Velayutham R; Arumugam S
    Life Sci; 2021 Aug; 278():119635. PubMed ID: 34015285
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High glucose and renin release: the role of succinate and GPR91.
    Peti-Peterdi J
    Kidney Int; 2010 Dec; 78(12):1214-7. PubMed ID: 20861827
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress.
    Guo C; He J; Deng X; Wang D; Yuan G
    Arch Physiol Biochem; 2023 Dec; 129(6):1250-1261. PubMed ID: 34048666
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Antifibrotic treatment and other new strategies for improving renal outcomes.
    Mathew A; Cunard R; Sharma K
    Contrib Nephrol; 2011; 170():217-227. PubMed ID: 21659774
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies.
    Darenskaya M; Kolesnikov S; Semenova N; Kolesnikova L
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569752
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Diabetic nephropathy: An update on pathogenesis and drug development.
    A/L B Vasanth Rao VR; Tan SH; Candasamy M; Bhattamisra SK
    Diabetes Metab Syndr; 2019; 13(1):754-762. PubMed ID: 30641802
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MicroRNA in diabetic nephropathy: renin angiotensin, aGE/RAGE, and oxidative stress pathway.
    Hagiwara S; McClelland A; Kantharidis P
    J Diabetes Res; 2013; 2013():173783. PubMed ID: 24575418
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nephropathy in diabetes.
    Satirapoj B
    Adv Exp Med Biol; 2012; 771():107-22. PubMed ID: 23393675
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Lowered intrarenal protein degradation--an alternative path to glomerulosclerosis and tubulo-interstitial fibrosis].
    Teschner M; Heidland A
    Med Klin (Munich); 2000 Jul; 95(7):385-91. PubMed ID: 10943099
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Lipids and diabetic nephropathy.
    Rosario RF; Prabhakar S
    Curr Diab Rep; 2006 Dec; 6(6):455-62. PubMed ID: 17118229
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The connection between GRKs and various signaling pathways involved in diabetic nephropathy.
    Wang FL; Tang LQ; Wei W
    Mol Biol Rep; 2012 Jul; 39(7):7717-26. PubMed ID: 22350265
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets.
    Zoja C; Xinaris C; Macconi D
    Front Pharmacol; 2020; 11():586892. PubMed ID: 33519447
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Beneficial effects of angiotensin converting enzyme inhibition on renal function in patients with diabetic nephropathy.
    Ahmad S
    Br Med J (Clin Res Ed); 1986 Oct; 293(6553):1028. PubMed ID: 3094751
    [No Abstract]   [Full Text] [Related]  

  • 78. ISN Forefronts Symposium 2015: Nuclear Receptors and Diabetic Nephropathy.
    Zheng B; Chen L; Gonzalez FJ
    Kidney Int Rep; 2016 Sep; 1(3):177-188. PubMed ID: 28932823
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Diabetic nephropathy and antioxidants.
    Tavafi M
    J Nephropathol; 2013 Jan; 2(1):20-7. PubMed ID: 24475422
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rapid kidney function decline and increased risk of heart failure in patients with type 2 diabetes: findings from the ACCORD cohort : Rapid kidney function decline and heart failure in T2D.
    Bueno Junior CR; Bano A; Tang Y; Sun X; Abate A; Hall E; Mitri J; Morieri ML; Shah H; Doria A
    Cardiovasc Diabetol; 2023 Jun; 22(1):131. PubMed ID: 37365586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.