BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12411485)

  • 41. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery.
    Zhu L; Kaback HR; Dalbey RE
    J Biol Chem; 2013 Sep; 288(39):28180-94. PubMed ID: 23928306
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Roles of K+, H+, H2O, and DeltaPsi in solute transport mediated by major facilitator superfamily members ProP and LacY.
    Culham DE; Romantsov T; Wood JM
    Biochemistry; 2008 Aug; 47(31):8176-85. PubMed ID: 18620422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural determination of wild-type lactose permease.
    Guan L; Mirza O; Verner G; Iwata S; Kaback HR
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15294-8. PubMed ID: 17881559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The lactose permease meets Frankenstein.
    Kaback HR; Frillingos S; Jung H; Jung K; Privé GG; Ujwal ML; Weitzman C; Wu J; Zen K
    J Exp Biol; 1994 Nov; 196():183-95. PubMed ID: 7823021
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of pH on proton sugar symport activity of the lactose permease purified from Escherichia coli.
    Page MG; Rosenbusch JP; Yamato I
    J Biol Chem; 1988 Nov; 263(31):15897-905. PubMed ID: 3053684
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling structural transitions from the periplasmic-open state of lactose permease and interpretations of spin label experiments.
    Zhuang X; Klauda JB
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1541-52. PubMed ID: 27107553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phospholipid-assisted refolding of an integral membrane protein. Minimum structural features for phosphatidylethanolamine to act as a molecular chaperone.
    Bogdanov M; Umeda M; Dowhan W
    J Biol Chem; 1999 Apr; 274(18):12339-45. PubMed ID: 10212204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of lactose permease on the phospholipid environment in which it is reconstituted: a fluorescence and atomic force microscopy study.
    Merino S; Domènech O; Viñas M; Montero MT; Hernández-Borrell J
    Langmuir; 2005 May; 21(10):4642-7. PubMed ID: 16032883
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET.
    Suárez-Germà C; Loura LM; Domènech O; Montero MT; Vázquez-Ibar JL; Hernández-Borrell J
    J Phys Chem B; 2012 Dec; 116(48):14023-8. PubMed ID: 23137163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of a membrane protein for site-specific proteolysis: properties of engineered factor Xa protease sites in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Dunten RL; Kaback HR
    Biochemistry; 1995 Jan; 34(4):1107-12. PubMed ID: 7827058
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo analysis of integration of membrane proteins in Escherichia coli.
    Ito K; Akiyama Y
    Mol Microbiol; 1991 Sep; 5(9):2243-53. PubMed ID: 1766388
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutations in the lacY gene of Escherichia coli define functional organization of lactose permease.
    Mieschendahl M; Büchel D; Bocklage H; Müller-Hill B
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7652-6. PubMed ID: 6278484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid-dependent generation of dual topology for a membrane protein.
    Bogdanov M; Dowhan W
    J Biol Chem; 2012 Nov; 287(45):37939-48. PubMed ID: 22969082
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Asymmetric Conformational Change in LacY.
    Smirnova I; Kasho V; Jiang X; Kaback HR
    Biochemistry; 2017 Apr; 56(13):1943-1950. PubMed ID: 28300394
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains.
    Zen KH; McKenna E; Bibi E; Hardy D; Kaback HR
    Biochemistry; 1994 Jul; 33(27):8198-206. PubMed ID: 8031753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The lactose permease of Escherichia coli: overall structure, the sugar-binding site and the alternating access model for transport.
    Abramson J; Smirnova I; Kasho V; Verner G; Iwata S; Kaback HR
    FEBS Lett; 2003 Nov; 555(1):96-101. PubMed ID: 14630326
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of lacY expression on homogeneity of induction from the P(tac) and P(trc) promoters by natural and synthetic inducers.
    Khlebnikov A; Keasling JD
    Biotechnol Prog; 2002; 18(3):672-4. PubMed ID: 12052093
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Manipulating phospholipids for crystallization of a membrane transport protein.
    Guan L; Smirnova IN; Verner G; Nagamori S; Kaback HR
    Proc Natl Acad Sci U S A; 2006 Feb; 103(6):1723-6. PubMed ID: 16446422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane.
    Roepe PD; Zbar RI; Sarkar HK; Kaback HR
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):3992-6. PubMed ID: 2657733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification, reconstitution, and characterization of the lac permease of Escherichia coli.
    Viitanen P; Newman MJ; Foster DL; Wilson TH; Kaback HR
    Methods Enzymol; 1986; 125():429-52. PubMed ID: 3520229
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.