BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12411522)

  • 41.
    Dutka TL; Mollica JP; Lamboley CR; Weerakkody VC; Greening DW; Posterino GS; Murphy RM; Lamb GD
    Am J Physiol Cell Physiol; 2017 Mar; 312(3):C316-C327. PubMed ID: 27974300
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Exercise and suspension hypokinesia-induced alterations in mechanical properties of rat fast and slow-twitch skeletal muscles.
    Ertunc M; Atalay A; Yildirim M; Onur R
    Acta Physiol Hung; 2010 Sep; 97(3):316-25. PubMed ID: 20843770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparative analysis of the effects of exercise training on contractile responses in fast- and slow-twitch rat skeletal muscles.
    Joumaa WH; Léoty C
    J Comp Physiol B; 2002 May; 172(4):329-38. PubMed ID: 12037595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of creatine on contractile force and sensitivity in mechanically skinned single fibers from rat skeletal muscle.
    Murphy RM; Stephenson DG; Lamb GD
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1589-95. PubMed ID: 15282195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ROS-mediated decline in maximum Ca2+-activated force in rat skeletal muscle fibers following in vitro and in vivo stimulation.
    Dutka TL; Verburg E; Larkins N; Hortemo KH; Lunde PK; Sejersted OM; Lamb GD
    PLoS One; 2012; 7(5):e35226. PubMed ID: 22629297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.
    Macdonald WA; Stephenson DG
    J Physiol; 2006 May; 573(Pt 1):187-98. PubMed ID: 16556653
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature-dependent calcium sensitivity changes in skinned muscle fibres of rat and toad.
    Stephenson DG; Williams DA
    J Physiol; 1985 Mar; 360():1-12. PubMed ID: 3921690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature dependence of mechanical power output in mammalian (rat) skeletal muscle.
    Ranatunga KW
    Exp Physiol; 1998 May; 83(3):371-6. PubMed ID: 9639346
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C598-611. PubMed ID: 9277357
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of ADP on action potential-induced force responses in mechanically skinned rat fast-twitch fibres.
    Macdonald WA; Stephenson DG
    J Physiol; 2004 Sep; 559(Pt 2):433-47. PubMed ID: 15235084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endotoxin administration alters the force vs. pCa relationship of skeletal muscle fibers.
    Supinski G; Nethery D; Nosek TM; Callahan LA; Stofan D; DiMarco A
    Am J Physiol Regul Integr Comp Physiol; 2000 Apr; 278(4):R891-6. PubMed ID: 10749776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle.
    Watanabe D; Kanzaki K; Kuratani M; Matsunaga S; Yanaka N; Wada M
    J Muscle Res Cell Motil; 2015 Jun; 36(3):275-86. PubMed ID: 25697123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inorganic phosphate affects the pCa-force relationship more than the pCa-ATPase by increasing the rate of dissociation of force generating cross-bridges in skinned fibers from both EDL and soleus muscles of the rat.
    Kerrick WG; Xu Y
    J Muscle Res Cell Motil; 2004; 25(2):107-17. PubMed ID: 15360126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers.
    Wang G; Kawai M
    Biophys J; 1997 Aug; 73(2):878-94. PubMed ID: 9251805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A study of the short-term effects of glucose 6-phosphate on the contractile activation properties of skinned single muscle fibres of the rat. Implications for solution design.
    Patterson MF; Stephenson GM; Stephenson DG
    Pflugers Arch; 2001 Sep; 442(6):874-81. PubMed ID: 11680620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.
    Knuth ST; Dave H; Peters JR; Fitts RH
    J Physiol; 2006 Sep; 575(Pt 3):887-99. PubMed ID: 16809373
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A myosin-based mechanism for stretch activation and its possible role revealed by varying phosphate concentration in fast and slow mouse skeletal muscle fibers.
    Straight CR; Bell KM; Slosberg JN; Miller MS; Swank DM
    Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1143-C1152. PubMed ID: 31532715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of carnosine on contractile apparatus Ca²⁺ sensitivity and sarcoplasmic reticulum Ca²⁺ release in human skeletal muscle fibers.
    Dutka TL; Lamboley CR; McKenna MJ; Murphy RM; Lamb GD
    J Appl Physiol (1985); 2012 Mar; 112(5):728-36. PubMed ID: 22174397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle.
    Nocella M; Colombini B; Bagni MA; Bruton J; Cecchi G
    J Muscle Res Cell Motil; 2012 Mar; 32(6):403-9. PubMed ID: 22072314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.