BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12411602)

  • 1. The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter.
    Landry JR; Rouhi A; Medstrand P; Mager DL
    Mol Biol Evol; 2002 Nov; 19(11):1934-42. PubMed ID: 12411602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative polyadenylation signals and promoters act in concert to control tissue-specific expression of the Opitz Syndrome gene MID1.
    Winter J; Kunath M; Roepcke S; Krause S; Schneider R; Schweiger S
    BMC Mol Biol; 2007 Nov; 8():105. PubMed ID: 18005432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans.
    Medstrand P; Landry JR; Mager DL
    J Biol Chem; 2001 Jan; 276(3):1896-903. PubMed ID: 11054415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1.
    Landry JR; Mager DL
    Genomics; 2002 Nov; 80(5):499-508. PubMed ID: 12408967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HERV-K-T47D-Related long terminal repeats mediate polyadenylation of cellular transcripts.
    Baust C; Seifarth W; Germaier H; Hehlmann R; Leib-Mösch C
    Genomics; 2000 May; 66(1):98-103. PubMed ID: 10843810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats.
    Schön U; Seifarth W; Baust C; Hohenadl C; Erfle V; Leib-Mösch C
    Virology; 2001 Jan; 279(1):280-91. PubMed ID: 11145909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells.
    Sin HS; Huh JW; Kim DS; Kang DW; Min DS; Kim TH; Ha HS; Kim HH; Lee SY; Kim HS
    Arch Virol; 2006 Oct; 151(10):1985-94. PubMed ID: 16625320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of the endogenous retroviral promoter of the human endothelin B receptor gene.
    Landry JR; Mager DL
    J Virol; 2003 Jul; 77(13):7459-66. PubMed ID: 12805445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate beta3GAL-T5.
    Dunn CA; van de Lagemaat LN; Baillie GJ; Mager DL
    Gene; 2005 Dec; 364():2-12. PubMed ID: 16112824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional human endogenous retroviral LTR transcription start sites are located between the R and U5 regions.
    Kovalskaya E; Buzdin A; Gogvadze E; Vinogradova T; Sverdlov E
    Virology; 2006 Mar; 346(2):373-8. PubMed ID: 16337666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A retroviral promoter and a cellular enhancer define a bipartite element which controls env ERVWE1 placental expression.
    Prudhomme S; Oriol G; Mallet F
    J Virol; 2004 Nov; 78(22):12157-68. PubMed ID: 15507602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human endogenous retroviral long terminal repeat sequences as cell type-specific promoters in retroviral vectors.
    Schön U; Diem O; Leitner L; Günzburg WH; Mager DL; Salmons B; Leib-Mösch C
    J Virol; 2009 Dec; 83(23):12643-50. PubMed ID: 19741000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An endogenous retroviral long terminal repeat is the dominant promoter for human beta1,3-galactosyltransferase 5 in the colon.
    Dunn CA; Medstrand P; Mager DL
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12841-6. PubMed ID: 14534330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human endogenous retrovirus HERV-K14 families: status, variants, evolution, and mobilization of other cellular sequences.
    Flockerzi A; Burkhardt S; Schempp W; Meese E; Mayer J
    J Virol; 2005 Mar; 79(5):2941-9. PubMed ID: 15709013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avian endogenous retrovirus EAV-HP shares regions of identity with avian leukosis virus subgroup J and the avian retrotransposon ART-CH.
    Sacco MA; Flannery DM; Howes K; Venugopal K
    J Virol; 2000 Feb; 74(3):1296-306. PubMed ID: 10627540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intergenic splicing between a HERV-H endogenous retrovirus and two adjacent human genes.
    Kowalski PE; Freeman JD; Mager DL
    Genomics; 1999 May; 57(3):371-9. PubMed ID: 10329003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The P5 multicopy gene family in the MHC is related in sequence to human endogenous retroviruses HERV-L and HERV-16.
    Kulski JK; Dawkins RL
    Immunogenetics; 1999 May; 49(5):404-12. PubMed ID: 10199916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary diversification of DYX1C1 transcripts via an HERV-H LTR integration event.
    Kim YJ; Huh JW; Kim DS; Han K; Kim HM; Kim HS
    Genes Genet Syst; 2011; 86(4):277-84. PubMed ID: 22214596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of retroviral antisense transcripts and promoter activity of the HERV-K(C4) insertion in the MHC class III region.
    Mack M; Bender K; Schneider PM
    Immunogenetics; 2004 Aug; 56(5):321-32. PubMed ID: 15309346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retroviral promoters in the human genome.
    Conley AB; Piriyapongsa J; Jordan IK
    Bioinformatics; 2008 Jul; 24(14):1563-7. PubMed ID: 18535086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.