BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 12411663)

  • 21. Local and conducted vasomotor responses in isolated rat cerebral arterioles.
    Dietrich HH; Kajita Y; Dacey RG
    Am J Physiol; 1996 Sep; 271(3 Pt 2):H1109-16. PubMed ID: 8853348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles.
    Chilton L; Loutzenhiser R
    Circ Res; 2001 Feb; 88(2):152-8. PubMed ID: 11157666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+-K+-ATPase.
    Qamirani E; Razavi HM; Wu X; Davis MJ; Kuo L; Hein TW
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1617-23. PubMed ID: 16327018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cigarette smoking impairs Na+-K+-ATPase activity in the human coronary microcirculation.
    Miura H; Toyama K; Pratt PF; Gutterman DD
    Am J Physiol Heart Circ Physiol; 2011 Jan; 300(1):H109-17. PubMed ID: 21076023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelium-independent constriction of isolated, pressurized arterioles by Nomega-nitro-L-arginine methyl ester (L-NAME).
    Murphy TV; Kotecha N; Hill MA
    Br J Pharmacol; 2007 Jul; 151(5):602-9. PubMed ID: 17471179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of vascular smooth muscle inward-rectifier K
    Tykocki NR; Bonev AD; Longden TA; Heppner TJ; Nelson MT
    Am J Physiol Renal Physiol; 2017 May; 312(5):F836-F847. PubMed ID: 28148533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Participation of intracellular Ca2+ stores in arteriolar conducted responses.
    Yashiro Y; Duling BR
    Am J Physiol Heart Circ Physiol; 2003 Jul; 285(1):H65-73. PubMed ID: 12637360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postischemic augmentation of conducted dilation in cerebral arterioles.
    Ngai AC; Nguyen TS; Meno JR; Britz GW
    Stroke; 2007 Jan; 38(1):124-30. PubMed ID: 17122418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.
    Hein TW; Kuo L
    Circ Res; 1999 Oct; 85(7):634-42. PubMed ID: 10506488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, induces dilation of isolated porcine retinal arterioles: role of nitric oxide and potassium channels.
    Omae T; Nagaoka T; Tanano I; Yoshida A
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6749-56. PubMed ID: 21757589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels.
    Miura H; Liu Y; Gutterman DD
    Circulation; 1999 Jun; 99(24):3132-8. PubMed ID: 10377076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A role of nitric oxide in vasomotor control of cerebral parenchymal arterioles in rats.
    Takayasu M; Kajita Y; Suzuki Y; Shibuya M; Sugita K; Hidaka H
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S63-6. PubMed ID: 7836689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine.
    Hein TW; Yuan Z; Rosa RH; Kuo L
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2113-9. PubMed ID: 15914631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homocellular conduction along endothelium and smooth muscle of arterioles in hamster cheek pouch: unmasking an NO wave.
    Budel S; Bartlett IS; Segal SS
    Circ Res; 2003 Jul; 93(1):61-8. PubMed ID: 12791708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional role of the Na+/H+ exchanger in the regulation of cerebral arteriolar tone in rats.
    Saesue P; Horiuchi T; Goto T; Tanaka Y; Hongo K
    J Neurosurg; 2004 Aug; 101(2):330-5. PubMed ID: 15309927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. K(+)-induced dilation of a small renal artery: no role for inward rectifier K+ channels.
    Prior HM; Webster N; Quinn K; Beech DJ; Yates MS
    Cardiovasc Res; 1998 Mar; 37(3):780-90. PubMed ID: 9659463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of platelet-activating factor on arteriolar and venular tone in rat trachea.
    Collins LC; Roberts AM
    Microvasc Res; 1997 Jan; 53(1):63-72. PubMed ID: 9056476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyrosine phosphorylation modulates arteriolar tone but is not fundamental to myogenic response.
    Spurrell BE; Murphy TV; Hill MA
    Am J Physiol Heart Circ Physiol; 2000 Feb; 278(2):H373-82. PubMed ID: 10666067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.