These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 1241167)

  • 41. Development of dot-ELISA for the detection of venoms of major Indian venomous snakes.
    Shaikh IK; Dixit PP; Pawade BS; Waykar IG
    Toxicon; 2017 Dec; 139():66-73. PubMed ID: 29024771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the lethal components in Vipera aspis aspis and Vipera aspis zinnikeri venom.
    Komori Y; Nikai T; Sugihara H
    J Nat Toxins; 1998 Jun; 7(2):101-8. PubMed ID: 9678184
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Naja mossambica mossambica venom. Purification, some properties and the amino acid sequences of three phospholipases A (CM-I, CM-II and CM-III).
    Joubert FJ
    Biochim Biophys Acta; 1977 Jul; 493(1):216-27. PubMed ID: 880314
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [The composition, biochemical properties and toxicity of snake venoms].
    Całkosiński I; Seweryn E; Zasadowski A; Małolepsza-Jarmołowska K; Dzierzba K; Bronowicka-Szydełko A; Mierzchała M; Ceremuga I; Rosińczuk-Tonderys J; Dobrzyński M; Gamian A
    Postepy Hig Med Dosw (Online); 2010 May; 64():262-72. PubMed ID: 20558864
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pathogenesis of snake venom intoxication. I. Neurotoxins.
    GITTER S; MOROZ C; LIWNI E; DE VRIES A
    Proc Staff Meet Pethah Tiqva Isr Beilinson Hosp; 1961; 10():160-7. PubMed ID: 13898972
    [No Abstract]   [Full Text] [Related]  

  • 46. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis.
    Oliveira FDR; Noronha MDDN; Lozano JLL
    Rev Soc Bras Med Trop; 2017; 50(3):365-373. PubMed ID: 28700055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Simple and Novel Strategy for the Production of a Pan-specific Antiserum against Elapid Snakes of Asia.
    Ratanabanangkoon K; Tan KY; Eursakun S; Tan CH; Simsiriwong P; Pamornsakda T; Wiriyarat W; Klinpayom C; Tan NH
    PLoS Negl Trop Dis; 2016 Apr; 10(4):e0004565. PubMed ID: 27058956
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural resistance of bovine animals to Micrurus migrocinctus venom.
    Bolaños R; Piva A; Taylor R; Flores A
    Toxicon; 1975 Nov; 13(5):369-79. PubMed ID: 1209656
    [No Abstract]   [Full Text] [Related]  

  • 49. SUSCEPTIBILITY OF ERYTHROCYTES OF VARIOUS ANIMAL SPECIES TO THE HEMOLYTIC AND PHOSPHOLIPID SPLITTING ACTION OF SNAKE VENOM.
    CONDREA E; MAMMON Z; ALOOF S; DEVRIES A
    Biochim Biophys Acta; 1964 Aug; 84():365-75. PubMed ID: 14230811
    [No Abstract]   [Full Text] [Related]  

  • 50. [Phospholipases A2 from snake and bee venoms].
    Nishida S; Tamiya N
    Tanpakushitsu Kakusan Koso; 1986 Feb; 31(2):158-65. PubMed ID: 3523621
    [No Abstract]   [Full Text] [Related]  

  • 51. Micrurus snake species: Venom immunogenicity, antiserum cross-reactivity and neutralization potential.
    Tanaka GD; Sant'Anna OA; Marcelino JR; Lustoza da Luz AC; Teixeira da Rocha MM; Tambourgi DV
    Toxicon; 2016 Jul; 117():59-68. PubMed ID: 27045363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Categorization of venoms according to bonding properties: An immunological overview.
    Ibrahim NM; El-Kady EM; Asker MS
    Mol Immunol; 2016 Feb; 70():24-33. PubMed ID: 26690707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Classification of phospholipases A2 according to sequence. Evolutionary and pharmacological implications.
    Dufton MJ; Hider RC
    Eur J Biochem; 1983 Dec; 137(3):545-51. PubMed ID: 6662110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BaltPLA2: A New Phospholipase A2 from Bothrops Alternatus Snake Venom with Antiplatelet Aggregation Activity.
    Dias EHV; Dos Santos Paschoal T; da Silva AP; da Cunha Pereira DF; de Sousa Simamoto BB; Matias MS; Santiago FM; Rosa JC; Soares A; Santos-Filho NA; de Oliveira F; Mamede CCN
    Protein Pept Lett; 2018; 25(10):943-952. PubMed ID: 30289061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Harnessing snake venom phospholipases A
    Almeida JR; Palacios ALV; Patiño RSP; Mendes B; Teixeira CAS; Gomes P; da Silva SL
    Drug Dev Res; 2019 Feb; 80(1):68-85. PubMed ID: 30255943
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes.
    Perumal Samy R; Gopalakrishnakone P; Thwin MM; Chow TK; Bow H; Yap EH; Thong TW
    J Appl Microbiol; 2007 Mar; 102(3):650-9. PubMed ID: 17309613
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lachesis stenophrys venom reduces the equine antibody response towards Bothrops asper venom used as co-immunogen in the production of polyspecific snake antivenom.
    Arroyo C; Solano S; Herrera M; Segura Á; Estrada R; Vargas M; Villalta M; Gutiérrez JM; León G
    Toxicon; 2015 Sep; 103():99-105. PubMed ID: 26100664
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Snake Venom Hemotoxic Enzymes: Biochemical Comparison between
    Roldán-Padrón O; Castro-Guillén JL; García-Arredondo JA; Cruz-Pérez MS; Díaz-Peña LF; Saldaña C; Blanco-Labra A; García-Gasca T
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31014025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acidic phospholipases A2 from the venom of common sea snake Enhydrina schistosa.
    Tan NH
    Biochim Biophys Acta; 1982 Aug; 717(3):503-8. PubMed ID: 7126645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antigenic cross-reactivity among components of Brazilian Elapidae snake venoms.
    Higashi HG; Guidolin R; Caricati CP; Fernandes I; Marcelino JR; Morais JF; Yamagushi IK; Stephano MA; Dias-da-Silva W; Takehara HA
    Braz J Med Biol Res; 1995 Jul; 28(7):767-71. PubMed ID: 8580868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.