These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12412644)

  • 1. Photon absorption in resonant-cavity-enhanced gaas far-infrared detectors.
    Luo H; Zhang Y; Shen W; Ding Y; Yu G
    Appl Opt; 2002 Nov; 41(31):6537-42. PubMed ID: 12412644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of the reflectivity in absorbing Bragg reflectors.
    Shen JL; Chang C; Chou W; Wu M; Chen Y
    Opt Express; 2001 Sep; 9(6):287-93. PubMed ID: 19421299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors.
    Quack N; Blunier S; Dual J; Felder F; Arnold M; Zogg H
    Sensors (Basel); 2008 Sep; 8(9):5466-5478. PubMed ID: 27873824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonant-cavity infrared detector with five-quantum-well absorber and 34% external quantum efficiency at 4 μm.
    Canedy CL; Bewley WW; Merritt CD; Kim CS; Kim M; Warren MV; Jackson EM; Nolde JA; Affouda CA; Aifer EH; Vurgaftman I; Meyer JR
    Opt Express; 2019 Feb; 27(3):3771-3781. PubMed ID: 30732391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures.
    Yan X; Zhang X; Li J; Wu Y; Cui J; Ren X
    Nanoscale; 2015 Jan; 7(3):1110-5. PubMed ID: 25482135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical limiting performance of a GaAs/AlAs heterostructure microcavity in the near-infrared.
    Ryzhov AA
    Appl Opt; 2017 Jul; 56(21):5811-5816. PubMed ID: 29047894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant-cavity-enhanced p-i-n photodetector using a high-contrast-grating for 940nm.
    Guan M; Chang-Hasnain C
    Opt Express; 2022 Mar; 30(6):9298-9306. PubMed ID: 35299361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The study of CO2 cavity enhanced absorption and highly sensitive absorption spectroscopy].
    Pei SX; Gao XM; Cui FP; Huang W; Shao J; Fan H; Zhang WJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):1908-11. PubMed ID: 16544469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrathin high efficiency photodetectors based on subwavelength grating and near-field enhanced absorption.
    Zohar M; Auslender M; Hava S
    Nanoscale; 2015 Mar; 7(12):5476-9. PubMed ID: 25732592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guided-mode resonance gratings for enhanced mid-infrared absorption in quantum dot intermediate-band solar cells.
    Elsehrawy F; Niemi T; Cappelluti F
    Opt Express; 2018 Mar; 26(6):A352-A359. PubMed ID: 29609305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of antenna-coupled Nb
    Tu X; Jiang C; Xiao P; Kang L; Zhai S; Jiang Z; Feng Su R; Jia X; Zhang L; Chen J; Wu P
    Opt Express; 2018 Apr; 26(7):8990-8997. PubMed ID: 29715857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced absorption of infrared light for quantum wells in coupled pillar-cavity arrays.
    Xin-Yang J; Wei-Wei L; Tian-Xin L; Hui X; Wei-Jie D; Li Y; Yu-Ying L; Wei L
    Opt Express; 2023 Feb; 31(5):7090-7102. PubMed ID: 36859847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization dependence of a GaAs-based two-photon absorption microcavity photodetector.
    O'Dowd J; Guo WH; Flood E; Lynch M; Bradley AL; Barry LP; Donegan JF
    Opt Express; 2008 Oct; 16(22):17682-8. PubMed ID: 18958048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-to-far infrared tunable perfect absorption by a sub - λ/100 nanofilm in a fractal phasor resonant cavity.
    Toudert J; Serna R; Pardo MG; Ramos N; Peláez RJ; Maté B
    Opt Express; 2018 Dec; 26(26):34043-34059. PubMed ID: 30650834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors.
    Csete M; Sipos Á; Najafi F; Hu X; Berggren KK
    Appl Opt; 2011 Nov; 50(31):5949-56. PubMed ID: 22086019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of resonant cavity structure for efficient high-temperature operation of single-photon avalanche photodiodes.
    Zavvari M; Abedi K; Karimi M
    Appl Opt; 2014 May; 53(15):3311-7. PubMed ID: 24922220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform.
    Wang J; Hu J; Becla P; Agarwal AM; Kimerling LC
    Opt Express; 2010 Jun; 18(12):12890-6. PubMed ID: 20588417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a polarization-insensitive superconducting nanowire single photon detector with high detection efficiency.
    Zheng F; Xu R; Zhu G; Jin B; Kang L; Xu W; Chen J; Wu P
    Sci Rep; 2016 Mar; 6():22710. PubMed ID: 26948672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multispectral superconducting nanowire single photon detector.
    Li H; Wang H; You L; Hu P; Shen W; Zhang W; Yang X; Zhang L; Zhou H; Wang Z; Xie X
    Opt Express; 2019 Feb; 27(4):4727-4733. PubMed ID: 30876083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto infrared absorption in high electron density GaAs quantum wells.
    Poulter AJ; Zeman J; Maude DK; Potemski M; Martinez G; Riedel A; Hey R; Friedland KJ
    Phys Rev Lett; 2001 Jan; 86(2):336-9. PubMed ID: 11177825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.