These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 12412811)

  • 21. Spatiotemporal characterization of microdamage accumulation and its targeted remodeling mechanisms in diabetic fatigued bone.
    Liu X; Li W; Cai J; Yan Z; Shao X; Xie K; Guo XE; Luo E; Jing D
    FASEB J; 2020 Feb; 34(2):2579-2594. PubMed ID: 31908007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Fatigue damage and repair in bone].
    Zhang C; Wu D; Guo Y; Guo T; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):180-6. PubMed ID: 12744194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluid flow and convective transport of solutes within the intervertebral disc.
    Ferguson SJ; Ito K; Nolte LP
    J Biomech; 2004 Feb; 37(2):213-21. PubMed ID: 14706324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
    Galley SA; Michalek DJ; Donahue SW
    J Biomech; 2006; 39(11):2026-33. PubMed ID: 16115637
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A case for strain-induced fluid flow as a regulator of BMU-coupling and osteonal alignment.
    Smit TH; Burger EH; Huyghe JM
    J Bone Miner Res; 2002 Nov; 17(11):2021-9. PubMed ID: 12412810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the role of osteocytes in the initiation of targeted remodeling.
    Heino TJ; Kurata K; Higaki H; Väänänen HK
    Technol Health Care; 2009; 17(1):49-56. PubMed ID: 19478405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteocyte morphology in fibula and calvaria --- is there a role for mechanosensing?
    Vatsa A; Breuls RG; Semeins CM; Salmon PL; Smit TH; Klein-Nulend J
    Bone; 2008 Sep; 43(3):452-8. PubMed ID: 18625577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A finite element analysis for the prediction of load-induced fluid flow and mechanochemical transduction in bone.
    Steck R; Niederer P; Knothe Tate ML
    J Theor Biol; 2003 Jan; 220(2):249-59. PubMed ID: 12468296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunar-canalicular system of osteons.
    Petrov N; Pollack SR
    Biorheology; 2003; 40(1-3):347-53. PubMed ID: 12454425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes.
    Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P
    Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Increased intracortical remodeling following fatigue damage.
    Mori S; Burr DB
    Bone; 1993; 14(2):103-9. PubMed ID: 8334026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Micromechanically based poroelastic modeling of fluid flow in Haversian bone.
    Swan CC; Lakes RS; Brand RA; Stewart KJ
    J Biomech Eng; 2003 Feb; 125(1):25-37. PubMed ID: 12661194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of vascular porosity on fluid flow and nutrient transport in loaded cortical bone.
    Goulet GC; Hamilton N; Cooper D; Coombe D; Tran D; Martinuzzi R; Zernicke RF
    J Biomech; 2008 Jul; 41(10):2169-75. PubMed ID: 18533159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.
    Kameo Y; Adachi T; Hojo M
    J Mech Behav Biomed Mater; 2011 Aug; 4(6):900-8. PubMed ID: 21616471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological underpinnings of Frost's mechanostat thresholds: the important role of osteocytes.
    Hughes JM; Petit MA
    J Musculoskelet Neuronal Interact; 2010 Jun; 10(2):128-35. PubMed ID: 20516629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeted bone remodeling involves BMU steering as well as activation.
    Martin RB
    Bone; 2007 Jun; 40(6):1574-80. PubMed ID: 17398173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanoresponse of bone is closely related to the osteocyte lacunocanalicular network architecture.
    van Tol AF; Schemenz V; Wagermaier W; Roschger A; Razi H; Vitienes I; Fratzl P; Willie BM; Weinkamer R
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32251-32259. PubMed ID: 33288694
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphologic changes associated with functional adaptation of the navicular bone of horses.
    Bentley VA; Sample SJ; Livesey MA; Scollay MC; Radtke CL; Frank JD; Kalscheur VL; Muir P
    J Anat; 2007 Nov; 211(5):662-72. PubMed ID: 17850287
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.