These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12413457)

  • 21. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy.
    Baumann F; Bauer MS; Milles LF; Alexandrovich A; Gaub HE; Pippig DA
    Nat Nanotechnol; 2016 Jan; 11(1):89-94. PubMed ID: 26457965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy.
    Yuan C; Chen A; Kolb P; Moy VT
    Biochemistry; 2000 Aug; 39(33):10219-23. PubMed ID: 10956011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surprising lability of biotin-streptavidin bond during transcription of biotinylated DNA bound to paramagnetic streptavidin beads.
    Fujita K; Silver J
    Biotechniques; 1993 Apr; 14(4):608-17. PubMed ID: 7682819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free quantification of activated NF-kappaB in biological samples by atomic force microscopy.
    Menotta M; Crinelli R; Carloni E; Bianchi M; Giacomini E; Valbusa U; Magnani M
    Biosens Bioelectron; 2010 Jul; 25(11):2490-6. PubMed ID: 20452198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonisotopic quantitative analysis of protein-DNA interactions at equilibrium.
    Benotmane AM; Hoylaerts MF; Collen D; Belayew A
    Anal Biochem; 1997 Aug; 250(2):181-5. PubMed ID: 9245437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-assembly of DNA-streptavidin nanostructures and their use as reagents in immuno-PCR.
    Niemeyer CM; Adler M; Pignataro B; Lenhert S; Gao S; Chi L; Fuchs H; Blohm D
    Nucleic Acids Res; 1999 Dec; 27(23):4553-61. PubMed ID: 10556310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a novel aptamer-based sensing system using atomic force microscopy.
    Miyachi Y; Ogino C; Amino T; Kondo A
    J Biosci Bioeng; 2011 Nov; 112(5):511-4. PubMed ID: 21821470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of various sequence-specific triplexes by electron and atomic force microscopies.
    Cherny DI; Fourcade A; Svinarchuk F; Nielsen PE; Malvy C; Delain E
    Biophys J; 1998 Feb; 74(2 Pt 1):1015-23. PubMed ID: 9533714
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A streptavidin linker layer that functions after drying.
    Xia N; Shumaker-Parry JS; Zareie MH; Campbell CT; Castner DG
    Langmuir; 2004 Apr; 20(9):3710-6. PubMed ID: 15875404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal amplification.
    Zhang Y; Tang Z; Wang J; Wu H; Maham A; Lin Y
    Anal Chem; 2010 Aug; 82(15):6440-6. PubMed ID: 20608643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami.
    Wu N; Zhou X; Czajkowsky DM; Ye M; Zeng D; Fu Y; Fan C; Hu J; Li B
    Nanoscale; 2011 Jun; 3(6):2481-4. PubMed ID: 21526259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An improved measurement of dsDNA elasticity using AFM.
    Nguyen TH; Lee SM; Na K; Yang S; Kim J; Yoon ES
    Nanotechnology; 2010 Feb; 21(7):75101. PubMed ID: 20090198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.
    Taninaka A; Takeuchi O; Shigekawa H
    Int J Mol Sci; 2010 May; 11(5):2134-51. PubMed ID: 20559507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope.
    Allen S; Davies J; Dawkes AC; Davies MC; Edwards JC; Parker MC; Roberts CJ; Sefton J; Tendler SJ; Williams PM
    FEBS Lett; 1996 Jul; 390(2):161-4. PubMed ID: 8706850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of small ligand-protein interactions by electrophoretic mobility shift assay using DNA-modified ligand as a sensing probe.
    Funabashi H; Ubukata M; Ebihara T; Aizawa M; Mie M; Kobatake E
    Biotechnol Lett; 2007 May; 29(5):785-9. PubMed ID: 17279446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophoretic Mobility Shift Assay Using Radiolabeled DNA Probes.
    Poulin-Laprade D; Burrus V
    Methods Mol Biol; 2015; 1334():1-15. PubMed ID: 26404140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force-clamp measurements of receptor-ligand interactions.
    Rico F; Chu C; Moy VT
    Methods Mol Biol; 2011; 736():331-53. PubMed ID: 21660736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry.
    Sedlak SM; Bauer MS; Kluger C; Schendel LC; Milles LF; Pippig DA; Gaub HE
    PLoS One; 2017; 12(12):e0188722. PubMed ID: 29206886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micropatterning of biomolecules on glass surfaces modified with various functional groups using photoactivatable biotin.
    Choi HJ; Kim NH; Chung BH; Seong GH
    Anal Biochem; 2005 Dec; 347(1):60-6. PubMed ID: 16242111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR
    Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.