These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12413478)

  • 1. Surface plasmon resonance characterization of drug/liposome interactions.
    Baird CL; Courtenay ES; Myszka DG
    Anal Biochem; 2002 Nov; 310(1):93-9. PubMed ID: 12413478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the mechanism of drug/lipid membrane interactions using Biacore.
    Abdiche YN; Myszka DG
    Anal Biochem; 2004 May; 328(2):233-43. PubMed ID: 15113702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analyte-receptor binding on surface plasmon resonance biosensors: a fractal analysis of Cre-loxP interactions and the influence of Cl, O, and S on drug-liposome interactions.
    Butala HD; Tan Y; Sadana A
    Anal Biochem; 2004 Sep; 332(1):10-22. PubMed ID: 15301944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance in protein-membrane interactions.
    Besenicar M; Macek P; Lakey JH; Anderluh G
    Chem Phys Lipids; 2006 Jun; 141(1-2):169-78. PubMed ID: 16584720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensor analysis of the interaction between drug compounds and liposomes of different properties; a two-dimensional characterization tool for estimation of membrane absorption.
    Frostell-Karlsson A; Widegren H; Green CE; Hämäläinen MD; Westerlund L; Karlsson R; Fenner K; van de Waterbeemd H
    J Pharm Sci; 2005 Jan; 94(1):25-37. PubMed ID: 15761927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of cationic drugs with liposomes.
    Howell BA; Chauhan A
    Langmuir; 2009 Oct; 25(20):12056-65. PubMed ID: 19821620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of lipids and surfactants on TLR5-proteoliposome functionality for flagellin detection using surface plasmon resonance biosensing.
    Olguín Y; Carrascosa LG; Lechuga LM; Young M
    Talanta; 2014 Aug; 126():136-44. PubMed ID: 24881544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of PDZ-Peptide and PDZ-Lipid Interactions by Surface Plasmon Resonance/BIAcore.
    Zimmermann P; Egea-Jimenez AL
    Methods Mol Biol; 2021; 2256():75-87. PubMed ID: 34014517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance studies of the direct interaction between a drug/intestinal brush border membrane.
    Kim K; Cho S; Park JH; Byun Y; Chung H; Kwon IC; Jeong SY
    Pharm Res; 2004 Jul; 21(7):1233-9. PubMed ID: 15290865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligomerization of Clostridium perfringens epsilon-toxin is dependent upon membrane fluidity in liposomes.
    Nagahama M; Hara H; Fernandez-Miyakawa M; Itohayashi Y; Sakurai J
    Biochemistry; 2006 Jan; 45(1):296-302. PubMed ID: 16388606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approach for reliable evaluation of drug proteins interactions using surface plasmon resonance technology.
    Sandblad P; Arnell R; Samuelsson J; Fornstedt T
    Anal Chem; 2009 May; 81(9):3551-9. PubMed ID: 19338267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free measurements of molecular transport across liposome membranes using evanescent-wave sensing.
    Brändén M; Dahlin S; Höök F
    Chemphyschem; 2008 Dec; 9(17):2480-5. PubMed ID: 19034923
    [No Abstract]   [Full Text] [Related]  

  • 13. SPR biosensor studies of the direct interaction between 27 drugs and a liposome surface: correlation with fraction absorbed in humans.
    Danelian E; Karlén A; Karlsson R; Winiwarter S; Hansson A; Löfâs S; Lennernäs H; Hämäläinen MD
    J Med Chem; 2000 Jun; 43(11):2083-6. PubMed ID: 10841786
    [No Abstract]   [Full Text] [Related]  

  • 14. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip.
    Erb EM; Chen X; Allen S; Roberts CJ; Tendler SJ; Davies MC; Forsén S
    Anal Biochem; 2000 Apr; 280(1):29-35. PubMed ID: 10805517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective toxin-lipid membrane interactions of natural, haemolytic Scyphozoan toxins analyzed by surface plasmon resonance.
    Helmholz H
    Biochim Biophys Acta; 2010 Oct; 1798(10):1944-52. PubMed ID: 20599534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of the binding of cationic amphiphilic drugs to phospholipid bilayers using surface plasmon resonance.
    Nussio MR; Sykes MJ; Miners JO; Shapter JG
    ChemMedChem; 2007 Mar; 2(3):366-73. PubMed ID: 17191292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of thiolated phospholipids on formation of supported lipid bilayers on gold substrates investigated by surface-sensitive methods.
    Kılıç A; Fazeli Jadidi M; Özer HÖ; Kök FN
    Colloids Surf B Biointerfaces; 2017 Dec; 160():117-125. PubMed ID: 28918188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach for liposome immobilization using sterically stabilized micelles (SSMs) as a precursor for bio-layer interferometry-based interaction studies.
    Wallner J; Lhota G; Schosserer M; Vorauer-Uhl K
    Colloids Surf B Biointerfaces; 2017 Jun; 154():186-194. PubMed ID: 28340485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of surface plasmon resonance biosensor technology as a possible alternative to detect differences in binding of enantiomeric drug compounds to immobilized albumins.
    Ahmad A; Ramakrishnan A; McLean MA; Breau AP
    Biosens Bioelectron; 2003 Apr; 18(4):399-404. PubMed ID: 12604257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersions and the effect of cholesterol incorporation on hydrolysis kinetics.
    Grit M; Zuidam NJ; Underberg WJ; Crommelin DJ
    J Pharm Pharmacol; 1993 Jun; 45(6):490-5. PubMed ID: 8103093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.