These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12413538)

  • 21. What factors influence the rate constant of substrate epoxidation by compound I of cytochrome P450 and analogous iron(IV)-oxo oxidants?
    Kumar D; Karamzadeh B; Sastry GN; de Visser SP
    J Am Chem Soc; 2010 Jun; 132(22):7656-67. PubMed ID: 20481499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-state reactivity in alkane hydroxylation by non-heme iron-oxo complexes.
    Hirao H; Kumar D; Que L; Shaik S
    J Am Chem Soc; 2006 Jul; 128(26):8590-606. PubMed ID: 16802826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can a single oxidant with two spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome p450.
    Sharma PK; De Visser SP; Shaik S
    J Am Chem Soc; 2003 Jul; 125(29):8698-9. PubMed ID: 12862444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.
    Wang B; Lee YM; Clémancey M; Seo MS; Sarangi R; Latour JM; Nam W
    J Am Chem Soc; 2016 Feb; 138(7):2426-36. PubMed ID: 26816269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions.
    Rydberg P; Lonsdale R; Harvey JN; Mulholland AJ; Olsen L
    J Mol Graph Model; 2014 Jul; 52():30-5. PubMed ID: 25000094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-valent iron in chemical and biological oxidations.
    Groves JT
    J Inorg Biochem; 2006 Apr; 100(4):434-47. PubMed ID: 16516297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient inverted metastable iron hydroperoxides in fenton chemistry. A nonenzymatic model for cytochrome p450 hydroxylation.
    Bach RD; Dmitrenko O
    J Org Chem; 2010 Jun; 75(11):3705-14. PubMed ID: 20429613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic Study of the Stereoselective Hydroxylation of [2-
    Yang CL; Lin CH; Luo WI; Lee TL; Ramu R; Ng KY; Tsai YF; Wei GT; Yu SS
    Chemistry; 2017 Feb; 23(11):2571-2582. PubMed ID: 27798822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A theoretical study of the dynamic behavior of alkane hydroxylation by a compound I model of cytochrome P450.
    Yoshizawa K; Kamachi T; Shiota Y
    J Am Chem Soc; 2001 Oct; 123(40):9806-16. PubMed ID: 11583542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How do aldehyde side products occur during alkene epoxidation by cytochrome P450? Theory reveals a state-specific multi-state scenario where the high-spin component leads to all side products.
    de Visser SP; Kumar D; Shaik S
    J Inorg Biochem; 2004 Jul; 98(7):1183-93. PubMed ID: 15219984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How does the axial ligand of cytochrome P450 biomimetics influence the regioselectivity of aliphatic versus aromatic hydroxylation?
    de Visser SP; Tahsini L; Nam W
    Chemistry; 2009; 15(22):5577-87. PubMed ID: 19347895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rationalization of the barrier height for p-Z-styrene epoxidation by iron(IV)-oxo porphyrin cation radicals with variable axial ligands.
    Kumar D; Latifi R; Kumar S; Rybak-Akimova EV; Sainna MA; de Visser SP
    Inorg Chem; 2013 Jul; 52(14):7968-79. PubMed ID: 23822112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of perferryl-oxo oxidant in alkane hydroxylation catalyzed by cytochrome P450: a hybrid density functional study.
    Isobe H; Yamaguchi K; Okumura M; Shimada J
    J Phys Chem B; 2012 Apr; 116(16):4713-30. PubMed ID: 22510212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic isotope effect is a sensitive probe of spin state reactivity in C-H hydroxylation of N,N-dimethylaniline by cytochrome P450.
    Li C; Wu W; Kumar D; Shaik S
    J Am Chem Soc; 2006 Jan; 128(2):394-5. PubMed ID: 16402810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radical intermediates in the catalytic oxidation of hydrocarbons by bacterial and human cytochrome P450 enzymes.
    Jiang Y; He X; Ortiz de Montellano PR
    Biochemistry; 2006 Jan; 45(2):533-42. PubMed ID: 16401082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes.
    Cho KB; Hirao H; Shaik S; Nam W
    Chem Soc Rev; 2016 Mar; 45(5):1197-210. PubMed ID: 26690848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical study on the mechanism of camphor hydroxylation by compound I of cytochrome p450.
    Kamachi T; Yoshizawa K
    J Am Chem Soc; 2003 Apr; 125(15):4652-61. PubMed ID: 12683838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A highly reactive p450 model compound I.
    Bell SR; Groves JT
    J Am Chem Soc; 2009 Jul; 131(28):9640-1. PubMed ID: 19552441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fundamental reaction pathways for cytochrome P450-catalyzed 5'-hydroxylation and N-demethylation of nicotine.
    Li D; Wang Y; Han K; Zhan CG
    J Phys Chem B; 2010 Jul; 114(27):9023-30. PubMed ID: 20572647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.