These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 12413746)

  • 1. Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain.
    Bieberich E
    Biosystems; 2002; 66(3):145-64. PubMed ID: 12413746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractal rules in brain networks: Signatures of self-organization.
    Singh SS; Haobijam D; Malik MZ; Ishrat R; Singh RKB
    J Theor Biol; 2018 Jan; 437():58-66. PubMed ID: 28935234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two forms of feedback inhibition determine the dynamical state of a small hippocampal network.
    Zeldenrust F; Wadman WJ
    Neural Netw; 2009 Oct; 22(8):1139-58. PubMed ID: 19679445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coding of temporally varying signals in networks of spiking neurons with global delayed feedback.
    Masuda N; Doiron B; Longtin A; Aihara K
    Neural Comput; 2005 Oct; 17(10):2139-75. PubMed ID: 16105221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matching and selection of a specific subjective experience: conjugate matching and experience.
    Vimal RL
    J Integr Neurosci; 2010 Jun; 9(2):193-251. PubMed ID: 20589953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback interactions between neuronal pointers and maps for attentional processing.
    Hahnloser R; Douglas RJ; Mahowald M; Hepp K
    Nat Neurosci; 1999 Aug; 2(8):746-52. PubMed ID: 10412065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Networks of conscious experience: computational neuroscience in understanding life, death, and consciousness.
    Leisman G; Koch P
    Rev Neurosci; 2009; 20(3-4):151-76. PubMed ID: 20157986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-order model of biological neural networks.
    Lo JT
    Neural Comput; 2011 Oct; 23(10):2626-82. PubMed ID: 21671788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness.
    Ebner M; Hameroff S
    Comput Intell Neurosci; 2011; 2011():247879. PubMed ID: 22046178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing self-similar and fractal properties of the C. elegans neural network.
    Reese TM; Brzoska A; Yott DT; Kelleher DJ
    PLoS One; 2012; 7(10):e40483. PubMed ID: 23071485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling plasticity in dendrites: from single cells to networks.
    Bono J; Wilmes KA; Clopath C
    Curr Opin Neurobiol; 2017 Oct; 46():136-141. PubMed ID: 28888857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive self-organization in a realistic neural network model.
    Meisel C; Gross T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061917. PubMed ID: 20365200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling in topological properties of brain networks.
    Singh SS; Khundrakpam B; Reid AT; Lewis JD; Evans AC; Ishrat R; Sharma BI; Singh RK
    Sci Rep; 2016 Apr; 6():24926. PubMed ID: 27112129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive reconfiguration of fractal small-world human brain functional networks.
    Bassett DS; Meyer-Lindenberg A; Achard S; Duke T; Bullmore E
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19518-23. PubMed ID: 17159150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The organization of physiological brain networks.
    Stam CJ; van Straaten EC
    Clin Neurophysiol; 2012 Jun; 123(6):1067-87. PubMed ID: 22356937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Account of Spontaneous Activity as a Signature of Predictive Coding.
    Koren V; Denève S
    PLoS Comput Biol; 2017 Jan; 13(1):e1005355. PubMed ID: 28114353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational aspects of feedback in neural circuits.
    Maass W; Joshi P; Sontag ED
    PLoS Comput Biol; 2007 Jan; 3(1):e165. PubMed ID: 17238280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.