These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 12413787)
41. Expression in grasses of multiple transgenes for degradation of munitions compounds on live-fire training ranges. Zhang L; Routsong R; Nguyen Q; Rylott EL; Bruce NC; Strand SE Plant Biotechnol J; 2017 May; 15(5):624-633. PubMed ID: 27862819 [TBL] [Abstract][Full Text] [Related]
42. Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material. Kwon MJ; O'Loughlin EJ; Antonopoulos DA; Finneran KT Chemosphere; 2011 Aug; 84(9):1223-30. PubMed ID: 21664641 [TBL] [Abstract][Full Text] [Related]
43. Effect of mycorrhizal fungi on the phytoremediation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Thompson PL; Polebitski AS Environ Sci Technol; 2010 Feb; 44(3):1112-5. PubMed ID: 20039668 [TBL] [Abstract][Full Text] [Related]
44. Characterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Hawari J; Halasz A; Sheremata T; Beaudet S; Groom C; Paquet L; Rhofir C; Ampleman G; Thiboutot S Appl Environ Microbiol; 2000 Jun; 66(6):2652-7. PubMed ID: 10831452 [TBL] [Abstract][Full Text] [Related]
45. Improved RDX detoxification with starch addition using a novel nitrogen-fixing aerobic microbial consortium from soil contaminated with explosives. Khan MI; Yang J; Yoo B; Park J J Hazard Mater; 2015 Apr; 287():243-51. PubMed ID: 25661171 [TBL] [Abstract][Full Text] [Related]
46. Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Schoenmuth B; Mueller JO; Scharnhorst T; Schenke D; Büttner C; Pestemer W Environ Sci Pollut Res Int; 2014 Mar; 21(5):3733-43. PubMed ID: 24281674 [TBL] [Abstract][Full Text] [Related]
47. Growth changes of eighteen herbaceous angiosperms induced by Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil. Hagan FL; Koeser AK; Dawson JO Int J Phytoremediation; 2016; 18(1):94-102. PubMed ID: 26247847 [TBL] [Abstract][Full Text] [Related]
48. Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Seth-Smith HM; Rosser SJ; Basran A; Travis ER; Dabbs ER; Nicklin S; Bruce NC Appl Environ Microbiol; 2002 Oct; 68(10):4764-71. PubMed ID: 12324318 [TBL] [Abstract][Full Text] [Related]
49. Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Roh H; Yu CP; Fuller ME; Chu KH Environ Sci Technol; 2009 Apr; 43(7):2505-11. PubMed ID: 19452908 [TBL] [Abstract][Full Text] [Related]
50. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces. Jaramillo AM; Douglas TA; Walsh ME; Trainor TP Chemosphere; 2011 Aug; 84(8):1058-65. PubMed ID: 21601233 [TBL] [Abstract][Full Text] [Related]
51. The fate of the cyclic nitramine explosive RDX in natural soil. Sheremata TW; Halasz A; Paquet L; Thiboutot S; Ampleman G; Hawari J Environ Sci Technol; 2001 Mar; 35(6):1037-40. PubMed ID: 11347911 [TBL] [Abstract][Full Text] [Related]
52. Enhancing hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) remediation through water-dispersible Microbacterium esteraromaticum granules. Yadav S; Sharma A; Khan MA; Sharma R; Celin M; Malik A; Sharma S J Environ Manage; 2020 Jun; 264():110446. PubMed ID: 32250888 [TBL] [Abstract][Full Text] [Related]
53. Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. Lorenz A; Rylott EL; Strand SE; Bruce NC FEMS Microbiol Lett; 2013 Mar; 340(1):49-54. PubMed ID: 23289483 [TBL] [Abstract][Full Text] [Related]
54. Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT). Crocker FH; Jung CM; Indest KJ; Everman SJ; Carr MR Biodegradation; 2019 Dec; 30(5-6):415-431. PubMed ID: 31250271 [TBL] [Abstract][Full Text] [Related]
55. Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater. Beller HR; Tiemeier K Environ Sci Technol; 2002 May; 36(9):2060-6. PubMed ID: 12026993 [TBL] [Abstract][Full Text] [Related]
56. Field trial demonstrating phytoremediation of the military explosive RDX by XplA/XplB-expressing switchgrass. Cary TJ; Rylott EL; Zhang L; Routsong RM; Palazzo AJ; Strand SE; Bruce NC Nat Biotechnol; 2021 Oct; 39(10):1216-1219. PubMed ID: 33941930 [TBL] [Abstract][Full Text] [Related]
57. Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor. Zhao G; Zhou L; Li Y; Liu X; Ren X; Liu X J Hazard Mater; 2009 Sep; 169(1-3):402-10. PubMed ID: 19395162 [TBL] [Abstract][Full Text] [Related]
58. Binding of RDX to Cell Wall Components of Pinus sylvestris and Picea glauca and Three-Year Mineralisation Study of Tissue-Associated RDX Residues. Schoenmuth B; Schenke D; Scharnhorst T; Combrinck S; McCrindle RI; Mueller JO; Büttner C; Pestemer W Int J Phytoremediation; 2015; 17(7):716-25. PubMed ID: 25976886 [TBL] [Abstract][Full Text] [Related]
59. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds. Kwon MJ; Finneran KT Appl Environ Microbiol; 2006 Sep; 72(9):5933-41. PubMed ID: 16957213 [TBL] [Abstract][Full Text] [Related]
60. Microbial degradation and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine. Khan MI; Lee J; Park J J Microbiol Biotechnol; 2012 Oct; 22(10):1311-23. PubMed ID: 23075780 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]