These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12414316)

  • 1. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support.
    Wilcox TP; Zwickl DJ; Heath TA; Hillis DM
    Mol Phylogenet Evol; 2002 Nov; 25(2):361-71. PubMed ID: 12414316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake phylogeny: evidence from nuclear and mitochondrial genes.
    Slowinski JB; Lawson R
    Mol Phylogenet Evol; 2002 Aug; 24(2):194-202. PubMed ID: 12144756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling.
    Graham Reynolds R; Niemiller ML; Revell LJ
    Mol Phylogenet Evol; 2014 Feb; 71():201-13. PubMed ID: 24315866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the phylogenetic position of Boa constrictor among the Boinae.
    Burbrink FT
    Mol Phylogenet Evol; 2005 Jan; 34(1):167-80. PubMed ID: 15579390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic analyses reveal novel relationships among snake families.
    Streicher JW; Wiens JJ
    Mol Phylogenet Evol; 2016 Jul; 100():160-169. PubMed ID: 27083862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-level relationships of snakes inferred from four nuclear and mitochondrial genes.
    Vidal N; Hedges SB
    C R Biol; 2002 Sep; 325(9):977-85. PubMed ID: 12487103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Did egg-laying boas break Dollo's law? Phylogenetic evidence for reversal to oviparity in sand boas (Eryx: Boidae).
    Lynch VJ; Wagner GP
    Evolution; 2010 Jan; 64(1):207-16. PubMed ID: 19659599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher-level snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes.
    Heise PJ; Maxson LR; Dowling HG; Hedges SB
    Mol Biol Evol; 1995 Mar; 12(2):259-65. PubMed ID: 7700153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic relationships of xenodontine snakes inferred from 12S and 16S ribosomal RNA sequences.
    Vidal N; Kindl SG; Wong A; Hedges SB
    Mol Phylogenet Evol; 2000 Mar; 14(3):389-402. PubMed ID: 10712844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA.
    Near TJ; Pesavento JJ; Cheng CH
    Mol Phylogenet Evol; 2004 Sep; 32(3):881-91. PubMed ID: 15288063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogeography and evolution of body size and life history of African frogs: phylogeny of squeakers (Arthroleptis) and long-fingered frogs (Cardioglossa) estimated from mitochondrial data.
    Blackburn DC
    Mol Phylogenet Evol; 2008 Dec; 49(3):806-26. PubMed ID: 18804169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic relationships of Hynobius naevius (Amphibia: Caudata) as revealed by mitochondrial 12S and 16S rRNA genes.
    Tominaga A; Matsui M; Nishikawa K; Tanabe S
    Mol Phylogenet Evol; 2006 Mar; 38(3):677-84. PubMed ID: 16337138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.
    Mendes J; Harris DJ; Carranza S; Salvi D
    Mol Phylogenet Evol; 2016 Jul; 100():254-267. PubMed ID: 27095169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phylogenetic relationships and evolutionary history of the reef fish family Labridae.
    Westneat MW; Alfaro ME
    Mol Phylogenet Evol; 2005 Aug; 36(2):370-90. PubMed ID: 15955516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships.
    Flynn JJ; Finarelli JA; Zehr S; Hsu J; Nedbal MA
    Syst Biol; 2005 Apr; 54(2):317-37. PubMed ID: 16012099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes).
    Wüster W; Peppin L; Pook CE; Walker DE
    Mol Phylogenet Evol; 2008 Nov; 49(2):445-59. PubMed ID: 18804544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches.
    Leaché AD; Reeder TW
    Syst Biol; 2002 Feb; 51(1):44-68. PubMed ID: 11943092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: how much DNA sequence is enough?
    de Queiroz A; Lawson R; Lemos-Espinal JA
    Mol Phylogenet Evol; 2002 Feb; 22(2):315-29. PubMed ID: 11820851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.
    Fenn JD; Song H; Cameron SL; Whiting MF
    Mol Phylogenet Evol; 2008 Oct; 49(1):59-68. PubMed ID: 18672078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic systematics of the colorful, cyanide-producing millipedes of Appalachia (Polydesmida, Xystodesmidae, Apheloriini) using a total evidence Bayesian approach.
    Marek PE; Bond JE
    Mol Phylogenet Evol; 2006 Dec; 41(3):704-29. PubMed ID: 16876439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.