These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 12414372)
1. Midday stomatal closure in Norway spruce--reactions in the upper and lower crown. Zweifel R; Böhm JP; Häsler R Tree Physiol; 2002 Nov; 22(15-16):1125-36. PubMed ID: 12414372 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of water storage in mature subalpine Picea abies: temporal and spatial patterns of change in stem radius. Zweifel R; Häsler R Tree Physiol; 2001 Jun; 21(9):561-9. PubMed ID: 11390300 [TBL] [Abstract][Full Text] [Related]
3. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany. Köstner B; Falge E; Tenhunen JD Tree Physiol; 2002 Jun; 22(8):567-74. PubMed ID: 12045028 [TBL] [Abstract][Full Text] [Related]
4. Hydraulic and stomatal adjustment of Norway spruce trees to environmental stress. Sellin A Tree Physiol; 2001 Aug; 21(12-13):879-88. PubMed ID: 11498335 [TBL] [Abstract][Full Text] [Related]
5. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees. Ward EJ; Oren R; Sigurdsson BD; Jarvis PG; Linder S Tree Physiol; 2008 Apr; 28(4):579-96. PubMed ID: 18244944 [TBL] [Abstract][Full Text] [Related]
6. Water content and bark thickness of Norway spruce (Picea abies) stems: phloem water capacitance and xylem sap flow. Gall R; Landolt W; Schleppi P; Michellod V; Bucher JB Tree Physiol; 2002 Jun; 22(9):613-23. PubMed ID: 12069917 [TBL] [Abstract][Full Text] [Related]
7. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm. Koch GW; Sillett SC; Antoine ME; Williams CB Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214 [TBL] [Abstract][Full Text] [Related]
8. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees. Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025 [TBL] [Abstract][Full Text] [Related]
9. Transpiration of urban trees and its cooling effect in a high latitude city. Konarska J; Uddling J; Holmer B; Lutz M; Lindberg F; Pleijel H; Thorsson S Int J Biometeorol; 2016 Jan; 60(1):159-72. PubMed ID: 26048702 [TBL] [Abstract][Full Text] [Related]
10. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Motzer T; Munz N; Küppers M; Schmitt D; Anhuf D Tree Physiol; 2005 Oct; 25(10):1283-93. PubMed ID: 16076777 [TBL] [Abstract][Full Text] [Related]
11. Water relations in tree physiology: where to from here? Landsberg J; Waring R; Ryan M Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481 [TBL] [Abstract][Full Text] [Related]
12. Use of temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration. Adelman JD; Ewers BE; Mackay DS Tree Physiol; 2008 Apr; 28(4):647-58. PubMed ID: 18244950 [TBL] [Abstract][Full Text] [Related]
13. Soil temperature, gas exchange and nitrogen status of 5-year-old Norway spruce seedlings. Lahti M; Aphalo PJ; Finér L; Lehto T; Leinonen I; Mannerkoski H; Ryyppö A Tree Physiol; 2002 Dec; 22(18):1311-6. PubMed ID: 12490429 [TBL] [Abstract][Full Text] [Related]
14. Acclimation of mature spruce and beech to five years of repeated summer drought - The role of stomatal conductance and leaf area adjustment for water use. Hesse BD; Hikino K; Gebhardt T; Buchhart C; Dervishi V; Goisser M; Pretzsch H; Häberle KH; Grams TEE Sci Total Environ; 2024 Nov; 951():175805. PubMed ID: 39197757 [TBL] [Abstract][Full Text] [Related]
15. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia. Kosugi Y; Takanashi S; Matsuo N; Nik AR Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974 [TBL] [Abstract][Full Text] [Related]
16. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. Zweifel R; Steppe K; Sterck FJ J Exp Bot; 2007; 58(8):2113-31. PubMed ID: 17490998 [TBL] [Abstract][Full Text] [Related]
17. Link between diurnal stem radius changes and tree water relations. Zweifel R; Item H; Häsler R Tree Physiol; 2001 Aug; 21(12-13):869-77. PubMed ID: 11498334 [TBL] [Abstract][Full Text] [Related]
18. Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris. Niinemets U Tree Physiol; 2002 Jun; 22(8):515-35. PubMed ID: 12045025 [TBL] [Abstract][Full Text] [Related]
19. Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i. Gotsch SG; Crausbay SD; Giambelluca TW; Weintraub AE; Longman RJ; Asbjornsen H; Hotchkiss SC; Dawson TE Tree Physiol; 2014 Jul; 34(7):766-77. PubMed ID: 24990865 [TBL] [Abstract][Full Text] [Related]
20. Structural adjustments in resprouting trees drive differences in post-fire transpiration. Nolan RH; Mitchell PJ; Bradstock RA; Lane PN Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]