These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 12414655)
1. Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Untergasser G; Koch HB; Menssen A; Hermeking H Cancer Res; 2002 Nov; 62(21):6255-62. PubMed ID: 12414655 [TBL] [Abstract][Full Text] [Related]
2. Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Waghray A; Schober M; Feroze F; Yao F; Virgin J; Chen YQ Cancer Res; 2001 May; 61(10):4283-6. PubMed ID: 11358857 [TBL] [Abstract][Full Text] [Related]
3. Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Xin H; Curry J; Johnstone RW; Nickoloff BJ; Choubey D Oncogene; 2003 Jul; 22(31):4831-40. PubMed ID: 12894224 [TBL] [Abstract][Full Text] [Related]
5. Function of JunB in transient amplifying cell senescence and progression of human prostate cancer. Konishi N; Shimada K; Nakamura M; Ishida E; Ota I; Tanaka N; Fujimoto K Clin Cancer Res; 2008 Jul; 14(14):4408-16. PubMed ID: 18628455 [TBL] [Abstract][Full Text] [Related]
6. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Bavik C; Coleman I; Dean JP; Knudsen B; Plymate S; Nelson PS Cancer Res; 2006 Jan; 66(2):794-802. PubMed ID: 16424011 [TBL] [Abstract][Full Text] [Related]
7. Up-regulated expression of the MAT-8 gene in prostate cancer and its siRNA-mediated inhibition of expression induces a decrease in proliferation of human prostate carcinoma cells. Grzmil M; Voigt S; Thelen P; Hemmerlein B; Helmke K; Burfeind P Int J Oncol; 2004 Jan; 24(1):97-105. PubMed ID: 14654946 [TBL] [Abstract][Full Text] [Related]
8. Silencing of MBD1 and MeCP2 in prostate-cancer-derived PC3 cells produces differential gene expression profiles and cellular phenotypes. Yaqinuddin A; Abbas F; Naqvi SZ; Bashir MU; Qazi R; Qureshi SA Biosci Rep; 2008 Dec; 28(6):319-26. PubMed ID: 18666890 [TBL] [Abstract][Full Text] [Related]
9. Analysis of gene expression profile in colon cancer using the Cancer Genome Anatomy Project and RNA interference. Huang ZG; Ran ZH; Lu W; Xiao SD Chin J Dig Dis; 2006; 7(2):97-102. PubMed ID: 16643337 [TBL] [Abstract][Full Text] [Related]
10. hTERT-immortalized prostate epithelial and stromal-derived cells: an authentic in vitro model for differentiation and carcinogenesis. Kogan I; Goldfinger N; Milyavsky M; Cohen M; Shats I; Dobler G; Klocker H; Wasylyk B; Voller M; Aalders T; Schalken JA; Oren M; Rotter V Cancer Res; 2006 Apr; 66(7):3531-40. PubMed ID: 16585177 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a method for profiling gene expression in cells recovered from intact human prostate tissue using RNA linear amplification. Ding Y; Xu L; Chen S; Jovanovic BD; Helenowski IB; Kelly DL; Catalona WJ; Yang XJ; Pins M; Ananthanarayanan V; Bergan RC Prostate Cancer Prostatic Dis; 2006; 9(4):379-91. PubMed ID: 16786039 [TBL] [Abstract][Full Text] [Related]
12. Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism. Wang Y; Shao C; Shi CH; Zhang L; Yue HH; Wang PF; Yang B; Zhang YT; Liu F; Qin WJ; Wang H; Shao GX Asian J Androl; 2005 Dec; 7(4):375-80. PubMed ID: 16281084 [TBL] [Abstract][Full Text] [Related]
13. [High throughput screening and analysis of prostate cancer-related genes through mining databases]. Wu G; Peng L; Jin FS; Li QS Ai Zheng; 2006 May; 25(5):645-50. PubMed ID: 16687091 [TBL] [Abstract][Full Text] [Related]
14. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. Guzey M; Luo J; Getzenberg RH J Cell Biochem; 2004 Oct; 93(2):271-85. PubMed ID: 15368355 [TBL] [Abstract][Full Text] [Related]
15. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Sarkisian CJ; Keister BA; Stairs DB; Boxer RB; Moody SE; Chodosh LA Nat Cell Biol; 2007 May; 9(5):493-505. PubMed ID: 17450133 [TBL] [Abstract][Full Text] [Related]
16. Identification of replicative senescence-associated genes in human umbilical vein endothelial cells by an annealing control primer system. Kim TW; Kim HJ; Lee C; Kim HY; Baek SH; Kim JH; Kwon KS; Kim JR Exp Gerontol; 2008 Apr; 43(4):286-95. PubMed ID: 18258400 [TBL] [Abstract][Full Text] [Related]
17. A comprehensive assessment of p53-responsive genes following adenoviral-p53 gene transfer in Bcl-2-expressing prostate cancer cells. Spurgers KB; Coombes KR; Meyn RE; Gold DL; Logothetis CJ; Johnson TJ; McDonnell TJ Oncogene; 2004 Mar; 23(9):1712-23. PubMed ID: 14647426 [TBL] [Abstract][Full Text] [Related]
18. Cellular retinoic acid-binding protein 2 is down-regulated in prostate cancer. Okuducu AF; Janzen V; Ko Y; Hahne JC; Lu H; Ma ZL; Albers P; Sahin A; Wellmann A; Scheinert P; Wernert N Int J Oncol; 2005 Nov; 27(5):1273-82. PubMed ID: 16211222 [TBL] [Abstract][Full Text] [Related]
19. Analysis of vitamin D-regulated gene expression in LNCaP human prostate cancer cells using cDNA microarrays. Krishnan AV; Shinghal R; Raghavachari N; Brooks JD; Peehl DM; Feldman D Prostate; 2004 May; 59(3):243-51. PubMed ID: 15042599 [TBL] [Abstract][Full Text] [Related]