These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 12414693)

  • 1. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles.
    Eriksson MA; Roux B
    Biophys J; 2002 Nov; 83(5):2595-609. PubMed ID: 12414693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels.
    Fu W; Cui M; Briggs JM; Huang X; Xiong B; Zhang Y; Luo X; Shen J; Ji R; Jiang H; Chen K
    Biophys J; 2002 Nov; 83(5):2370-85. PubMed ID: 12414674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels.
    Cui M; Shen J; Briggs JM; Fu W; Wu J; Zhang Y; Luo X; Chi Z; Ji R; Jiang H; Chen K
    J Mol Biol; 2002 Apr; 318(2):417-28. PubMed ID: 12051848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian dynamics simulations of interaction between scorpion toxin Lq2 and potassium ion channel.
    Cui M; Shen J; Briggs JM; Luo X; Tan X; Jiang H; Chen K; Ji R
    Biophys J; 2001 Apr; 80(4):1659-69. PubMed ID: 11259281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR.
    Lange A; Giller K; Hornig S; Martin-Eauclaire MF; Pongs O; Becker S; Baldus M
    Nature; 2006 Apr; 440(7086):959-62. PubMed ID: 16612389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaker pore structure as predicted by annealed atomic simulation using symmetry and novel geometric restraints.
    Yang PK; Lee CY; Hwang MJ
    Biophys J; 1997 Jun; 72(6):2479-89. PubMed ID: 9168024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulation of the interaction of kappa-conotoxin-PVIIA with the Shaker potassium channel pore.
    Moran O
    Eur Biophys J; 2001 Dec; 30(7):528-36. PubMed ID: 11820396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring structural features of the interaction between the scorpion toxinCnErg1 and ERG K+ channels.
    Frénal K; Xu CQ; Wolff N; Wecker K; Gurrola GB; Zhu SY; Chi CW; Possani LD; Tytgat J; Delepierre M
    Proteins; 2004 Aug; 56(2):367-75. PubMed ID: 15211519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry.
    Krezel AM; Kasibhatla C; Hidalgo P; MacKinnon R; Wagner G
    Protein Sci; 1995 Aug; 4(8):1478-89. PubMed ID: 8520473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic recognition and induced fit in the kappa-PVIIA toxin binding to Shaker potassium channel.
    Huang X; Dong F; Zhou HX
    J Am Chem Soc; 2005 May; 127(18):6836-49. PubMed ID: 15869307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of the interaction between ScyTx and small conductance calcium-activated potassium channel by docking and MM-PBSA.
    Wu Y; Cao Z; Yi H; Jiang D; Mao X; Liu H; Li W
    Biophys J; 2004 Jul; 87(1):105-12. PubMed ID: 15240449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the architecture of a K+ channel pore through mutant cycles with a peptide inhibitor.
    Hidalgo P; MacKinnon R
    Science; 1995 Apr; 268(5208):307-10. PubMed ID: 7716527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of inhibitory peptide maurotoxin recognizing Kv1.2 channel explored by ZDOCK and molecular dynamic simulations.
    Yi H; Qiu S; Cao Z; Wu Y; Li W
    Proteins; 2008 Feb; 70(3):844-54. PubMed ID: 17729277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis.
    Ranganathan R; Lewis JH; MacKinnon R
    Neuron; 1996 Jan; 16(1):131-9. PubMed ID: 8562077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling of voltage-gated potassium channel pore.
    Zhao SR; Chen KX; Wang W; Gu JD; Hu ZJ; Ji RY
    Zhongguo Yao Li Xue Bao; 1997 Jul; 18(4):323-30. PubMed ID: 10072914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel.
    Durell SR; Guy HR
    Neuropharmacology; 1996; 35(7):761-73. PubMed ID: 8938709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction simulation of hERG K+ channel with its specific BeKm-1 peptide: insights into the selectivity of molecular recognition.
    Yi H; Cao Z; Yin S; Dai C; Wu Y; Li W
    J Proteome Res; 2007 Feb; 6(2):611-20. PubMed ID: 17269718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.