These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 12414737)
1. Contact chemoreception in feeding by phytophagous insects. Chapman RF Annu Rev Entomol; 2003; 48():455-84. PubMed ID: 12414737 [TBL] [Abstract][Full Text] [Related]
2. Host plant influences on sex pheromone behavior of phytophagous insects. Landolt PJ; Phillips TW Annu Rev Entomol; 1997; 42():371-91. PubMed ID: 15012318 [TBL] [Abstract][Full Text] [Related]
3. Tasting in plant-feeding insects: from single compounds to complex natural stimuli. van Loon JJ; Tang Q; Wang H; Wang C; Zhou D; Smid HM SEB Exp Biol Ser; 2009; 63():103-26. PubMed ID: 19174991 [No Abstract] [Full Text] [Related]
4. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. EFSA GMO Panel Working Group on Animal Feeding Trials Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408 [TBL] [Abstract][Full Text] [Related]
5. Insect herbivore nutrient regulation. Behmer ST Annu Rev Entomol; 2009; 54():165-87. PubMed ID: 18764740 [TBL] [Abstract][Full Text] [Related]
6. Perception of insect feeding by plants. Bonaventure G Plant Biol (Stuttg); 2012 Nov; 14(6):872-80. PubMed ID: 22957774 [TBL] [Abstract][Full Text] [Related]
7. Odorant-binding proteins in insects. Zhou JJ Vitam Horm; 2010; 83():241-72. PubMed ID: 20831949 [TBL] [Abstract][Full Text] [Related]
8. Electrophysiological responses of taste cells to nutrient mixtures in the polyphagous caterpillar of Grammia geneura. Bernays EA; Chapman RF J Comp Physiol A; 2001 Apr; 187(3):205-13. PubMed ID: 11401200 [TBL] [Abstract][Full Text] [Related]
9. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites. Nishida R Biosci Biotechnol Biochem; 2014; 78(1):1-13. PubMed ID: 25036477 [TBL] [Abstract][Full Text] [Related]
10. A meta-analysis of preference-performance relationships in phytophagous insects. Gripenberg S; Mayhew PJ; Parnell M; Roslin T Ecol Lett; 2010 Mar; 13(3):383-93. PubMed ID: 20100245 [TBL] [Abstract][Full Text] [Related]
11. [Insect proteins transporting hydrophobic substances: Chemosensory stimulant carrier proteins in insect olfactory and gustatory receptors]. Ozaki M; Wada-Katsumata A Tanpakushitsu Kakusan Koso; 2008 Feb; 53(2):111-8. PubMed ID: 18240589 [No Abstract] [Full Text] [Related]
12. Insect host location: a volatile situation. Bruce TJ; Wadhams LJ; Woodcock CM Trends Plant Sci; 2005 Jun; 10(6):269-74. PubMed ID: 15949760 [TBL] [Abstract][Full Text] [Related]
13. Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Singh RN Microsc Res Tech; 1997 Dec; 39(6):547-63. PubMed ID: 9438253 [TBL] [Abstract][Full Text] [Related]
14. Plant lectins as defense proteins against phytophagous insects. Vandenborre G; Smagghe G; Van Damme EJ Phytochemistry; 2011 Sep; 72(13):1538-50. PubMed ID: 21429537 [TBL] [Abstract][Full Text] [Related]
15. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Zavala JA; Nabity PD; DeLucia EH Annu Rev Entomol; 2013; 58():79-97. PubMed ID: 22974069 [TBL] [Abstract][Full Text] [Related]
16. Differential inputs from chemosensory appendages mediate feeding responses to glucose in wild-type and glucose-averse German cockroaches, Blattella germanica. Wada-Katsumata A; Silverman J; Schal C Chem Senses; 2011 Sep; 36(7):589-600. PubMed ID: 21467150 [TBL] [Abstract][Full Text] [Related]