BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 12414927)

  • 1. Palmitoylation of the murine leukemia virus envelope protein is critical for lipid raft association and surface expression.
    Li M; Yang C; Tong S; Weidmann A; Compans RW
    J Virol; 2002 Dec; 76(23):11845-52. PubMed ID: 12414927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the cytoplasmic tail of murine leukemia virus envelope protein suppress fusion inhibition by R peptide.
    Li M; Yang C; Compans RW
    J Virol; 2001 Mar; 75(5):2337-44. PubMed ID: 11160737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell signaling through the protein kinases cAMP-dependent protein kinase, protein kinase Cepsilon, and RAF-1 regulates amphotropic murine leukemia virus envelope protein-induced syncytium formation.
    Wang W; Jobbagy Z; Bird TH; Eiden MV; Anderson WB
    J Biol Chem; 2005 Apr; 280(17):16772-83. PubMed ID: 15741175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of R peptide of murine leukemia virus envelope glycoproteins in syncytium formation and entry.
    Kubo Y; Tominaga C; Yoshii H; Kamiyama H; Mitani C; Amanuma H; Yamamoto N
    Arch Virol; 2007; 152(12):2169-82. PubMed ID: 17851730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals.
    Chan WE; Lin HH; Chen SS
    J Virol; 2005 Jul; 79(13):8374-87. PubMed ID: 15956582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of syncytia by neuropathogenic murine leukemia viruses depends on receptor density, host cell determinants, and the intrinsic fusion potential of envelope protein.
    Chung M; Kizhatil K; Albritton LM; Gaulton GN
    J Virol; 1999 Nov; 73(11):9377-85. PubMed ID: 10516046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of the naturally occurring soluble surface glycoprotein of ecotropic murine leukemia virus: binding specificity and possible conformational change after binding to receptor.
    Ikeda H; Kato K; Suzuki T; Kitani H; Matsubara Y; Takase-Yoden S; Watanabe R; Kitagawa M; Aizawa S
    J Virol; 2000 Feb; 74(4):1815-26. PubMed ID: 10644355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleavage of the murine leukemia virus transmembrane env protein by human immunodeficiency virus type 1 protease: transdominant inhibition by matrix mutations.
    Kiernan RE; Freed EO
    J Virol; 1998 Dec; 72(12):9621-7. PubMed ID: 9811695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palmitoylation of the HIV-1 envelope glycoprotein is critical for viral infectivity.
    Rousso I; Mixon MB; Chen BK; Kim PS
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13523-5. PubMed ID: 11095714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Murine leukemia virus R Peptide inhibits influenza virus hemagglutinin-induced membrane fusion.
    Li M; Li ZN; Yao Q; Yang C; Steinhauer DA; Compans RW
    J Virol; 2006 Jun; 80(12):6106-14. PubMed ID: 16731949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts.
    Chung CS; Huang CY; Chang W
    J Virol; 2005 Feb; 79(3):1623-34. PubMed ID: 15650188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palmitoylation of the Rous sarcoma virus transmembrane glycoprotein is required for protein stability and virus infectivity.
    Ochsenbauer-Jambor C; Miller DC; Roberts CR; Rhee SS; Hunter E
    J Virol; 2001 Dec; 75(23):11544-54. PubMed ID: 11689636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. R7-binding protein targets the G protein beta 5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain.
    Nini L; Waheed AA; Panicker LM; Czapiga M; Zhang JH; Simonds WF
    BMC Biochem; 2007 Sep; 8():18. PubMed ID: 17880698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural criteria for regulation of membrane fusion and virion incorporation by the murine leukemia virus TM cytoplasmic domain.
    Taylor GM; Sanders DA
    Virology; 2003 Aug; 312(2):295-305. PubMed ID: 12919735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic R-peptide of murine leukemia virus envelope protein negatively regulates its interaction with the cell surface receptor.
    Kubo Y; Izumida M; Togawa K; Zhang F; Hayashi H
    Virology; 2019 Jun; 532():82-87. PubMed ID: 31035110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4.
    Popik W; Alce TM
    J Biol Chem; 2004 Jan; 279(1):704-12. PubMed ID: 14570906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the C-terminal disulfide-bonded loop of murine leukemia virus SU protein in a postbinding step critical for viral entry.
    Burkhart MD; D'Agostino P; Kayman SC; Pinter A
    J Virol; 2005 Jun; 79(12):7868-76. PubMed ID: 15919941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphotropic murine leukaemia virus envelope protein is associated with cholesterol-rich microdomains.
    Beer C; Pedersen L; Wirth M
    Virol J; 2005 Apr; 2():36. PubMed ID: 15840168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of feline leukemia virus envelope proteins from a library by functional association with a murine leukemia virus envelope.
    Bupp K; Sarangi A; Roth MJ
    Virology; 2006 Aug; 351(2):340-8. PubMed ID: 16678875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Linked glycosylation is required for XC cell-specific syncytium formation by the R peptide-containing envelope protein of ecotropic murine leukemia viruses.
    Kubo Y; Ishimoto A; Amanuma H
    J Virol; 2003 Jul; 77(13):7510-6. PubMed ID: 12805451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.