BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 12414941)

  • 1. Cell proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication.
    Li W; Li Y; Kedersha N; Anderson P; Emara M; Swiderek KM; Moreno GT; Brinton MA
    J Virol; 2002 Dec; 76(23):11989-2000. PubMed ID: 12414941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification.
    Emara MM; Liu H; Davis WG; Brinton MA
    J Virol; 2008 Nov; 82(21):10657-70. PubMed ID: 18768985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell proteins bind specifically to West Nile virus minus-strand 3' stem-loop RNA.
    Shi PY; Li W; Brinton MA
    J Virol; 1996 Sep; 70(9):6278-87. PubMed ID: 8709255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA.
    Blackwell JL; Brinton MA
    J Virol; 1997 Sep; 71(9):6433-44. PubMed ID: 9261361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BHK cell proteins that bind to the 3' stem-loop structure of the West Nile virus genome RNA.
    Blackwell JL; Brinton MA
    J Virol; 1995 Sep; 69(9):5650-8. PubMed ID: 7637011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly.
    Emara MM; Brinton MA
    Proc Natl Acad Sci U S A; 2007 May; 104(21):9041-6. PubMed ID: 17502609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis.
    Davis WG; Blackwell JL; Shi PY; Brinton MA
    J Virol; 2007 Sep; 81(18):10172-87. PubMed ID: 17626087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cis-acting nucleotides and a structural feature in West Nile virus 3'-terminus RNA that facilitate viral minus strand RNA synthesis.
    Davis WG; Basu M; Elrod EJ; Germann MW; Brinton MA
    J Virol; 2013 Jul; 87(13):7622-36. PubMed ID: 23637406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities.
    Dember LM; Kim ND; Liu KQ; Anderson P
    J Biol Chem; 1996 Feb; 271(5):2783-8. PubMed ID: 8576255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, tissue distribution and genomic organization of the murine RRM-type RNA binding proteins TIA-1 and TIAR.
    Beck AR; Medley QG; O'Brien S; Anderson P; Streuli M
    Nucleic Acids Res; 1996 Oct; 24(19):3829-35. PubMed ID: 8871565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stress granule component TIA-1 binds tick-borne encephalitis virus RNA and is recruited to perinuclear sites of viral replication to inhibit viral translation.
    Albornoz A; Carletti T; Corazza G; Marcello A
    J Virol; 2014 Jun; 88(12):6611-22. PubMed ID: 24696465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein.
    Dong H; Zhang B; Shi PY
    Virology; 2008 Nov; 381(1):123-35. PubMed ID: 18799181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 3' stem loop of the West Nile virus genomic RNA can suppress translation of chimeric mRNAs.
    Li W; Brinton MA
    Virology; 2001 Aug; 287(1):49-61. PubMed ID: 11504541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The majority of the nucleotides in the top loop of the genomic 3' terminal stem loop structure are cis-acting in a West Nile virus infectious clone.
    Elghonemy S; Davis WG; Brinton MA
    Virology; 2005 Jan; 331(2):238-46. PubMed ID: 15629768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus.
    Deas TS; Bennett CJ; Jones SA; Tilgner M; Ren P; Behr MJ; Stein DA; Iversen PL; Kramer LD; Bernard KA; Shi PY
    Antimicrob Agents Chemother; 2007 Jul; 51(7):2470-82. PubMed ID: 17485503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA elements within the 5' untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication.
    Li XF; Jiang T; Yu XD; Deng YQ; Zhao H; Zhu QY; Qin ED; Qin CF
    J Gen Virol; 2010 May; 91(Pt 5):1218-23. PubMed ID: 20016034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5' stem-loop of genomic RNA.
    Zhang B; Dong H; Zhou Y; Shi PY
    J Virol; 2008 Jul; 82(14):7047-58. PubMed ID: 18448528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of West Nile virus containing a complete 3'CSI RNA deletion.
    Zhang B; Dong H; Ye H; Tilgner M; Shi PY
    Virology; 2010 Dec; 408(2):138-45. PubMed ID: 20965539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and functional characterization of a TIA-1-related nucleolysin.
    Kawakami A; Tian Q; Duan X; Streuli M; Schlossman SF; Anderson P
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8681-5. PubMed ID: 1326761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An RNA Thermometer Activity of the West Nile Virus Genomic 3'-Terminal Stem-Loop Element Modulates Viral Replication Efficiency during Host Switching.
    Meyer A; Freier M; Schmidt T; Rostowski K; Zwoch J; Lilie H; Behrens SE; Friedrich S
    Viruses; 2020 Jan; 12(1):. PubMed ID: 31952291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.