BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 124155)

  • 21. Labelling of the subunits of the mitochondrial adenosine triphosphatase complex in contact with the lipid bilayer [proceedings].
    Montecucco C; Bisson R; Pitotti A; Dabbeni-Sala F; Gutweniger H
    Biochem Soc Trans; 1979 Oct; 7(5):954-5. PubMed ID: 159845
    [No Abstract]   [Full Text] [Related]  

  • 22. The yeast mitochondrial adenosine triphosphatase complex. Purification, subunit composition, and some effects of protease inhibitors.
    Ryrie IJ
    Arch Biochem Biophys; 1977 Dec; 184(2):464-75. PubMed ID: 145825
    [No Abstract]   [Full Text] [Related]  

  • 23. The structure of mitochondrial ATPase.
    Senior AE
    Biochim Biophys Acta; 1973 Dec; 301(3):249-77. PubMed ID: 4273937
    [No Abstract]   [Full Text] [Related]  

  • 24. Structural and chemical aspects of the inhibitors of mitochondrial ATP synthesis.
    Beechey RB; Lindop CR; Broughall JM; Griffiths DE; Houghton RL
    Ann N Y Acad Sci; 1974 Feb; 227():542-8. PubMed ID: 4275125
    [No Abstract]   [Full Text] [Related]  

  • 25. Identification of the dicyclohexylcarbodiimide-binding protein in the oligomycin-sensitive adenosine triphosphatase from bovine heart mitochondria.
    Stekhovan FS; Waitkus RF; Van Moerkerk HT
    Biochemistry; 1972 Mar; 11(7):1144-50. PubMed ID: 4259001
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on the mitochondrial adenosine triphosphatase system. 3. Isolation from the oligomycin-sensitive adenosine triphosphatase complex of the factors which bind F-1 and determine oligomycin sensitivity of bound F-1.
    Tzagoloff A; Maclennan DH; Byington KH
    Biochemistry; 1968 Apr; 7(4):1596-602. PubMed ID: 4234148
    [No Abstract]   [Full Text] [Related]  

  • 27. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 28. Evidence supporting the identity of beef heart mitochondrial chloroform-released adenosine triphosphatase (ATPase) with coupling factor I.
    Spitsberg VL; Blair JE
    Biochim Biophys Acta; 1977 Apr; 460(1):136-41. PubMed ID: 139918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mechanisms of the conservation of energy in the mitochondrial membrane].
    Ernster L; Juntti K; Asami K
    Biokhimiia; 1973; 38(5):1062-9. PubMed ID: 4149966
    [No Abstract]   [Full Text] [Related]  

  • 30. Activation of beef heart mitochondrial adenosine triphosphatase by 2,4-dinitrophenol.
    Cantley LC; Hammes GG
    Biochemistry; 1973 Nov; 12(24):4900-4. PubMed ID: 4271561
    [No Abstract]   [Full Text] [Related]  

  • 31. Biochemical adaptations in muscle. II. Response of mitochondrial adenosine triphosphatase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise.
    Oscai LB; Holloszy JO
    J Biol Chem; 1971 Nov; 246(22):6968-72. PubMed ID: 4256681
    [No Abstract]   [Full Text] [Related]  

  • 32. A simple and rapid method for the preparation of adenosine triphosphatase from submitochondrial particles.
    Beechey RB; Hubbard SA; Linnett PE; Mitchell AD; Munn EA
    Biochem J; 1975 Jun; 148(3):533-7. PubMed ID: 128353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid protein interactions in mitochondria. VII. A comparison of the effects of lipid removal and lipid perturbation of the kinetic properties of mitochondrial ATPase.
    Parenti-Castelli G; Sechi AM; Landi L; Cabrini L; Mascarello S; Lenaz G
    Biochim Biophys Acta; 1979 Jul; 547(1):161-9. PubMed ID: 157158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of oligomycin-sensitive and -insensitive magnesium adenosine triphosphatase activity in fish by polychlorinated biphenyls.
    Desaiah D; Cutkomp LK; Yap HH; Koch RB
    Biochem Pharmacol; 1972 Mar; 21(6):857-65. PubMed ID: 4259269
    [No Abstract]   [Full Text] [Related]  

  • 35. Studies on the role of Mg 2+ and the Mg 2+ -stimulated adenosine triphosphatase in oxidative phosphorylation.
    Chao DL; Davis EJ
    Biochemistry; 1972 May; 11(10):1943-52. PubMed ID: 4260247
    [No Abstract]   [Full Text] [Related]  

  • 36. Energy-dependent enhancement of aurovertin fluorescence. An indicator of conformational changes in beef heart mitochondrial adenosine triphosphatase.
    Chang TM; Penefsky HS
    J Biol Chem; 1974 Feb; 249(4):1090-8. PubMed ID: 4273518
    [No Abstract]   [Full Text] [Related]  

  • 37. Comparison of the effects of oligomycin and dicyclohexylcarbodiimide on mitochondrial ATPase and related reactions.
    Glaser E; Norling B; Kopecký J; Ernster L
    Eur J Biochem; 1982 Jan; 121(3):525-31. PubMed ID: 6276175
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein.
    MacLennan DH; Tzagoloff A
    Biochemistry; 1968 Apr; 7(4):1603-10. PubMed ID: 4234149
    [No Abstract]   [Full Text] [Related]  

  • 39. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. II. The beef heart mitochondrial system.
    Harris DA; Radda GK; Slater EC
    Biochim Biophys Acta; 1977 Mar; 459(3):560-72. PubMed ID: 139163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mitochondrial ATPase of brown adipose tissue. Purification and comparison with the mitochondrial ATPase from beef heart.
    Cannon B; Vogel G
    FEBS Lett; 1977 Apr; 76(2):284-9. PubMed ID: 140818
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.