These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1241618)
41. Long term recording from cortical and subcortical neurons in unrestrained cats. Ramos A; Schwartz E; John ER Physiol Behav; 1976 Jun; 16(6):803-6. PubMed ID: 981376 [No Abstract] [Full Text] [Related]
42. [8-channel commutator for EEG recording and simultaneous electrical stimulation of the brains of unrestrained animals]. Timann V; Ott T; Malish R Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(5):1092-4. PubMed ID: 7445741 [No Abstract] [Full Text] [Related]
43. A lightweight telemetry system for recording neuronal activity in freely behaving small animals. Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257 [TBL] [Abstract][Full Text] [Related]
44. An improved time-amplitude window discriminator. Bak MJ; Schmidt EM IEEE Trans Biomed Eng; 1977 Sep; 24(5):486-9. PubMed ID: 408262 [No Abstract] [Full Text] [Related]
45. An electronic method of recording fluid drops with E.C.G. or E.E.G. machines. Pathak CL Indian J Physiol Pharmacol; 1968 Jul; 12(3):123-6. PubMed ID: 5731100 [No Abstract] [Full Text] [Related]
46. Rapid prototyping for neuroscience and neural engineering. Tek P; Chiganos TC; Mohammed JS; Eddington DT; Fall CP; Ifft P; Rousche PJ J Neurosci Methods; 2008 Jul; 172(2):263-9. PubMed ID: 18565590 [TBL] [Abstract][Full Text] [Related]
47. Use of rubber membranes to improve sucrose-gap and other electrical recording techniques. Berger W; Barr L J Appl Physiol; 1969 Mar; 26(3):378-82. PubMed ID: 5773181 [No Abstract] [Full Text] [Related]
51. Design and construction of a photoresistive sensor for monitoring the rat vibrissal displacement. Dürig F; Albarracín AL; Farfán FD; Felice CJ J Neurosci Methods; 2009 May; 180(1):71-6. PubMed ID: 19427531 [TBL] [Abstract][Full Text] [Related]
52. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related]
53. [Method and schematic for contactless read-out from a mercury manometer]. Efimchik MK; Prishchepo SA Med Tekh; 1976; (5):52-4. PubMed ID: 1027973 [No Abstract] [Full Text] [Related]
54. [Identification of an electromechanical converter used for recording biosignals]. Motuzinshin GM Nov Med Tekh; 1977; (4):69-74. PubMed ID: 616915 [No Abstract] [Full Text] [Related]
55. [Time constant of the instruments for the mechanographic recording of pulse]. Fuks J; Rocha RF; Luna RL; Carvalho Azevedo A Arq Bras Cardiol; 1975 Oct; 28(5):505-9. PubMed ID: 1217998 [No Abstract] [Full Text] [Related]
56. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. Bergveld P IEEE Trans Biomed Eng; 1972 Sep; 19(5):342-51. PubMed ID: 5038390 [No Abstract] [Full Text] [Related]
57. Automatic recording of the abstinence syndrome in opioid-dependent mice. Cowan A; Cowan P Experientia; 1972 Sep; 28(9):1126-7. PubMed ID: 4677194 [No Abstract] [Full Text] [Related]
58. Characteristics of transducers used for recording the apexcardiogram. Johnson JM; Siegel W; Blomqvist G J Appl Physiol; 1971 Nov; 31(5):796-800. PubMed ID: 5117201 [No Abstract] [Full Text] [Related]
59. Proceedings: Assessment of recording nappy. James ED; Flack FC Urol Int; 1974; 29(3):174-5. PubMed ID: 4825074 [No Abstract] [Full Text] [Related]