These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12416722)

  • 1. Adrenaline diminishes K+ contractures and Ba2+-current in chicken slow skeletal muscle fibres.
    Trujillo X; Huerta M; Vásquez C; Andrade F
    J Muscle Res Cell Motil; 2002; 23(2):157-65. PubMed ID: 12416722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. beta-Adrenergic modulation of Ba2+ currents and K+ contractures in frog slow skeletal muscle fibers.
    Huerta M; Trujillo X; Vásquez C
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C77-81. PubMed ID: 9038813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate.
    Arreola J; Calvo J; García MC; Sánchez JA
    J Physiol; 1987 Dec; 393():307-30. PubMed ID: 2451739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ba2+ ions block K+-induced contractures by antagonizing K+-induced membrane depolarization in frog skeletal muscle fibres.
    Frank GB; Rohani F
    Can J Physiol Pharmacol; 1982 Jan; 60(1):47-51. PubMed ID: 6279259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium action potentials and calcium currents in tonic muscle fibres of the frog (Rana pipiens).
    Huerta M; Stefani E
    J Physiol; 1986 Mar; 372():293-301. PubMed ID: 2425085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adrenergic modulation of the K+ contractures in tonic skeletal muscle fibers of the frog.
    Huerta M; Muñiz J; Trujillo X; Lomeli J
    Jpn J Physiol; 1991; 41(6):851-60. PubMed ID: 1666902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saturation of calcium channels and surface charge effects in skeletal muscle fibres of the frog.
    Cota G; Stefani E
    J Physiol; 1984 Jun; 351():135-54. PubMed ID: 6086902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-clamp analysis of membrane currents and excitation-contraction coupling in a crustacean muscle.
    Weiss T; Erxleben C; Rathmayer W
    J Muscle Res Cell Motil; 2001; 22(4):329-44. PubMed ID: 11808773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dimethyl sulfoxide on excitation-contraction coupling in chicken slow skeletal muscle.
    Velasco R; Trujillo X; Vásquez C; Huerta M; Trujillo-Hernández B
    J Pharmacol Sci; 2003 Oct; 93(2):149-54. PubMed ID: 14578582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of adrenaline on the tension developed in contractures and twitches of the ventricle of the frog.
    Graham JA; Lamb JF
    J Physiol; 1968 Jul; 197(2):479-509. PubMed ID: 5716855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive inotropic effect of adrenaline on potassium contractures in tonic skeletal muscle fibres of the frog.
    García MC; Escamilla-Sánchez J
    Can J Physiol Pharmacol; 1994 Dec; 72(12):1580-5. PubMed ID: 7736351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation by adrenaline of electrophysiological membrane parameters and contractility in intact and internally perfused single muscle fibres of the crayfish.
    Zacharová D; Lipská E; Hencek M; Hochmannová J; Sajter V
    Gen Physiol Biophys; 1993 Dec; 12(6):543-77. PubMed ID: 8070646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of external calcium reduction on the kinetics of potassium contractures in frog twitch muscle fibres.
    Cota G; Stefani E
    J Physiol; 1981 Aug; 317():303-16. PubMed ID: 6975818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solutions.
    Aaronson PI; Bolton TB; Lang RJ; MacKenzie I
    J Physiol; 1988 Nov; 405():57-75. PubMed ID: 2475611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent ionic currents in taste receptor cells of the larval tiger salamander.
    Sugimoto K; Teeter JH
    J Gen Physiol; 1990 Oct; 96(4):809-34. PubMed ID: 1701829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent calcium and potassium channels in Schwann cells cultured from dorsal root ganglia of the mouse.
    Amédée T; Ellie E; Dupouy B; Vincent JD
    J Physiol; 1991 Sep; 441():35-56. PubMed ID: 1667796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic agonists suppress a potassium current in freshly dissociated smooth muscle cells of the toad.
    Sims SM; Singer JJ; Walsh JV
    J Physiol; 1985 Oct; 367():503-29. PubMed ID: 2414443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Actions of barium and rubidium on membrane currents in canine Purkinje fibres.
    Cohen IS; Falk RT; Mulrine NK
    J Physiol; 1983 May; 338():589-612. PubMed ID: 6875972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast-activated inward calcium current in twitch muscle fibres of the frog (Rana montezume).
    Cota G; Stefani E
    J Physiol; 1986 Jan; 370():151-63. PubMed ID: 2420972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divalent ion currents and the delayed potassium conductance in an Aplysia neurone.
    Adams DJ; Gage PW
    J Physiol; 1980 Jul; 304():297-313. PubMed ID: 6255142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.