BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12416977)

  • 1. Impact of enzyme motion on activity.
    Hammes-Schiffer S
    Biochemistry; 2002 Nov; 41(45):13335-43. PubMed ID: 12416977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion.
    Billeter SR; Webb SP; Agarwal PK; Iordanov T; Hammes-Schiffer S
    J Am Chem Soc; 2001 Nov; 123(45):11262-72. PubMed ID: 11697969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating protein motion to catalysis.
    Hammes-Schiffer S; Benkovic SJ
    Annu Rev Biochem; 2006; 75():519-41. PubMed ID: 16756501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of mutation on enzyme motion in dihydrofolate reductase.
    Watney JB; Agarwal PK; Hammes-Schiffer S
    J Am Chem Soc; 2003 Apr; 125(13):3745-50. PubMed ID: 12656604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A perspective on enzyme catalysis.
    Benkovic SJ; Hammes-Schiffer S
    Science; 2003 Aug; 301(5637):1196-202. PubMed ID: 12947189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network of coupled promoting motions in enzyme catalysis.
    Agarwal PK; Billeter SR; Rajagopalan PT; Benkovic SJ; Hammes-Schiffer S
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2794-9. PubMed ID: 11867722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen tunneling and protein motion in enzyme reactions.
    Hammes-Schiffer S
    Acc Chem Res; 2006 Feb; 39(2):93-100. PubMed ID: 16489728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates.
    Rajagopalan PT; Lutz S; Benkovic SJ
    Biochemistry; 2002 Oct; 41(42):12618-28. PubMed ID: 12379104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein isotope effects in dihydrofolate reductase from Geobacillus stearothermophilus show entropic-enthalpic compensatory effects on the rate constant.
    Luk LY; Ruiz-Pernía JJ; Dawson WM; Loveridge EJ; Tuñón I; Moliner V; Allemann RK
    J Am Chem Soc; 2014 Dec; 136(49):17317-23. PubMed ID: 25396728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunneling and dynamics in enzymatic hydride transfer.
    Nagel ZD; Klinman JP
    Chem Rev; 2006 Aug; 106(8):3095-118. PubMed ID: 16895320
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural bases of hydrogen tunneling in enzymes: progress and puzzles.
    Liang ZX; Klinman JP
    Curr Opin Struct Biol; 2004 Dec; 14(6):648-55. PubMed ID: 15582387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, dynamics, and catalytic function of dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Annu Rev Biophys Biomol Struct; 2004; 33():119-40. PubMed ID: 15139807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model reaction assesses contribution of H-tunneling and coupled motions to enzyme catalysis.
    Liu Q; Zhao Y; Hammann B; Eilers J; Lu Y; Kohen A
    J Org Chem; 2012 Aug; 77(16):6825-33. PubMed ID: 22834675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy Enzymes and the Rational Redesign of Protein Catalysts.
    Scott AF; Luk LY; Tuñón I; Moliner V; Allemann RK
    Chembiochem; 2019 Nov; 20(22):2807-2812. PubMed ID: 31016852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer.
    Reyes AC; Amyes TL; Richard JP
    Org Biomol Chem; 2017 Oct; 15(42):8856-8866. PubMed ID: 28956050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.