These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12417020)

  • 21. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.
    Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2014 Apr; 117(4):407-12. PubMed ID: 24216461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
    Zhang L; Xiao M; Lu C; Zhang Y
    RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designed structural-rearrangement of an active group I ribozyme.
    Ikawa Y; Inoue T
    J Biochem; 2003 Feb; 133(2):189-95. PubMed ID: 12761181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Joining the two domains of a group I ribozyme to form the catalytic core.
    Tanner MA; Cech TR
    Science; 1997 Feb; 275(5301):847-9. PubMed ID: 9012355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast folding mutants of the Tetrahymena group I ribozyme reveal a rugged folding energy landscape.
    Rook MS; Treiber DK; Williamson JR
    J Mol Biol; 1998 Aug; 281(4):609-20. PubMed ID: 9710534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of the Tetrahymena ribozyme.
    Uchida T; He Q; Ralston CY; Brenowitz M; Chance MR
    Biochemistry; 2002 May; 41(18):5799-806. PubMed ID: 11980483
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two conserved structural components, A-rich bulge and P4 XJ6/7 base-triples, in activating the group I ribozymes.
    Ikawa Y; Yoshimura T; Hara H; Shiraishi H; Inoue T
    Genes Cells; 2002 Dec; 7(12):1205-15. PubMed ID: 12485161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Communication between RNA folding domains revealed by folding of circularly permuted ribozymes.
    Lease RA; Adilakshmi T; Heilman-Miller S; Woodson SA
    J Mol Biol; 2007 Oct; 373(1):197-210. PubMed ID: 17765924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalysis of RNA cleavage by a ribozyme derived from the group I intron of Anabaena pre-tRNA(Leu).
    Zaug AJ; Dávila-Aponte JA; Cech TR
    Biochemistry; 1994 Dec; 33(49):14935-47. PubMed ID: 7527660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme.
    Ortoleva-Donnelly L; Szewczak AA; Gutell RR; Strobel SA
    RNA; 1998 May; 4(5):498-519. PubMed ID: 9582093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple monovalent ion-dependent pathways for the folding of the L-21 Tetrahymena thermophila ribozyme.
    Uchida T; Takamoto K; He Q; Chance MR; Brenowitz M
    J Mol Biol; 2003 Apr; 328(2):463-78. PubMed ID: 12691754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic intermediates in RNA folding.
    Zarrinkar PP; Williamson JR
    Science; 1994 Aug; 265(5174):918-24. PubMed ID: 8052848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modular engineering of a Group I intron ribozyme.
    Ohuchi SJ; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res; 2002 Aug; 30(15):3473-80. PubMed ID: 12140333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.