These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12417020)

  • 41. Artificial modules for enhancing rate constants of a Group I intron ribozyme without a P4-P6 core element.
    Ohuchi SJ; Ikawa Y; Shiraishi H; Inoue T
    J Biol Chem; 2004 Jan; 279(1):540-6. PubMed ID: 14573613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Concerted effects of two activator modules on the group I ribozyme reaction.
    Ikawa Y; Shiohara T; Ohuchi S; Inoue T
    J Biochem; 2009 Apr; 145(4):429-35. PubMed ID: 19122204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simulated molecular evolution from minimal catalytic domain of a group I ribozyme.
    Ohuchi SJ; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res Suppl; 2001; (1):125-6. PubMed ID: 12836296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity.
    Young B; Herschlag D; Cech TR
    Cell; 1991 Nov; 67(5):1007-19. PubMed ID: 1959129
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mutations in the Tetrahymena ribozyme internal guide sequence: effects on docking of the P1 helix into the catalytic core and correlation with catalytic activity.
    Campbell TB; Cech TR
    Biochemistry; 1996 Sep; 35(35):11493-502. PubMed ID: 8784205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.
    Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res; 1999 Apr; 27(7):1650-5. PubMed ID: 10075996
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Requirements for alternative forms of the activator domain, P5abc, in the Tetrahymena ribozyme.
    Naito Y; Shiraishi H; Inoue T
    FEBS Lett; 2000 Jan; 466(2-3):273-8. PubMed ID: 10682842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis.
    Szewczak AA; Cech TR
    RNA; 1997 Aug; 3(8):838-49. PubMed ID: 9257643
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA.
    Pan J; Woodson SA
    J Mol Biol; 1999 Dec; 294(4):955-65. PubMed ID: 10588899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A peripheral element assembles the compact core structure essential for group I intron self-splicing.
    Xiao M; Li T; Yuan X; Shang Y; Wang F; Chen S; Zhang Y
    Nucleic Acids Res; 2005; 33(14):4602-11. PubMed ID: 16100381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for processivity and two-step binding of the RNA substrate from studies of J1/2 mutants of the Tetrahymena ribozyme.
    Herschlag D
    Biochemistry; 1992 Feb; 31(5):1386-99. PubMed ID: 1736996
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translocation of an RNA duplex on a ribozyme.
    Strobel SA; Cech TR
    Nat Struct Biol; 1994 Jan; 1(1):13-7. PubMed ID: 7544680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step.
    Herschlag D; Khosla M
    Biochemistry; 1994 May; 33(17):5291-7. PubMed ID: 8172903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans.
    Zhang Y; Leibowitz MJ
    Nucleic Acids Res; 2001 Jun; 29(12):2644-53. PubMed ID: 11410674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.