These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 12417320)
1. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. Zimmermann T; Rietdorf J; Girod A; Georget V; Pepperkok R FEBS Lett; 2002 Nov; 531(2):245-9. PubMed ID: 12417320 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
3. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
4. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131 [TBL] [Abstract][Full Text] [Related]
5. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489 [TBL] [Abstract][Full Text] [Related]
6. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. Goedhart J; Vermeer JE; Adjobo-Hermans MJ; van Weeren L; Gadella TW PLoS One; 2007 Oct; 2(10):e1011. PubMed ID: 17925859 [TBL] [Abstract][Full Text] [Related]
7. Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. van Rheenen J; Langeslag M; Jalink K Biophys J; 2004 Apr; 86(4):2517-29. PubMed ID: 15041688 [TBL] [Abstract][Full Text] [Related]
8. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446 [TBL] [Abstract][Full Text] [Related]
9. Quantification of protein interaction in living cells by two-photon spectral imaging with fluorescent protein fluorescence resonance energy transfer pair devoid of acceptor bleed-through. Kim J; Li X; Kang MS; Im KB; Genovesio A; Grailhe R Cytometry A; 2012 Feb; 81(2):112-9. PubMed ID: 22076866 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence resonance energy transfer-based stoichiometry in living cells. Hoppe A; Christensen K; Swanson JA Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132 [TBL] [Abstract][Full Text] [Related]
11. Resonance energy transfer from lanthanide chelates to overlapping and nonoverlapping fluorescent protein acceptors. Vuojola J; Lamminmäki U; Soukka T Anal Chem; 2009 Jun; 81(12):5033-8. PubMed ID: 19438245 [TBL] [Abstract][Full Text] [Related]
12. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. Vermeer JE; Van Munster EB; Vischer NO; Gadella TW J Microsc; 2004 May; 214(Pt 2):190-200. PubMed ID: 15102066 [TBL] [Abstract][Full Text] [Related]
13. Concatenation of cyan and yellow fluorescent proteins for efficient resonance energy transfer. Shimozono S; Hosoi H; Mizuno H; Fukano T; Tahara T; Miyawaki A Biochemistry; 2006 May; 45(20):6267-71. PubMed ID: 16700538 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the influence of yellow fluorescent protein photoconversion on acceptor photobleaching-based fluorescence resonance energy transfer measurements. Seitz A; Terjung S; Zimmermann T; Pepperkok R J Biomed Opt; 2012 Jan; 17(1):011010. PubMed ID: 22352644 [TBL] [Abstract][Full Text] [Related]
15. Engineering FRET constructs using CFP and YFP. Shimozono S; Miyawaki A Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. Karpova TS; Baumann CT; He L; Wu X; Grammer A; Lipsky P; Hager GL; McNally JG J Microsc; 2003 Jan; 209(Pt 1):56-70. PubMed ID: 12535185 [TBL] [Abstract][Full Text] [Related]
17. Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Rizzo MA; Springer G; Segawa K; Zipfel WR; Piston DW Microsc Microanal; 2006 Jun; 12(3):238-54. PubMed ID: 17481360 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Tramier M; Zahid M; Mevel JC; Masse MJ; Coppey-Moisan M Microsc Res Tech; 2006 Nov; 69(11):933-9. PubMed ID: 16941642 [TBL] [Abstract][Full Text] [Related]
19. Resonance energy transfer between green fluorescent protein variants: complexities revealed with myosin fusion proteins. Zeng W; Seward HE; Málnási-Csizmadia A; Wakelin S; Woolley RJ; Cheema GS; Basran J; Patel TR; Rowe AJ; Bagshaw CR Biochemistry; 2006 Sep; 45(35):10482-91. PubMed ID: 16939200 [TBL] [Abstract][Full Text] [Related]
20. Imaging FRET between spectrally similar GFP molecules in single cells. Harpur AG; Wouters FS; Bastiaens PI Nat Biotechnol; 2001 Feb; 19(2):167-9. PubMed ID: 11175733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]