These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 12417565)

  • 1. Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection.
    Lin F; Kaminski HJ; Conti-Fine BM; Wang W; Richmonds C; Medof ME
    J Clin Invest; 2002 Nov; 110(9):1269-74. PubMed ID: 12417565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia.
    Kaminski HJ; Kusner LL; Richmonds C; Medof ME; Lin F
    Exp Neurol; 2006 Dec; 202(2):287-93. PubMed ID: 16859686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis.
    Kaminski HJ; Li Z; Richmonds C; Lin F; Medof ME
    Exp Neurol; 2004 Oct; 189(2):333-42. PubMed ID: 15380483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell surface complement regulators moderate experimental myasthenia gravis pathology.
    Kusner LL; Halperin JA; Kaminski HJ
    Muscle Nerve; 2013 Jan; 47(1):33-40. PubMed ID: 23042232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice.
    Morgan BP; Chamberlain-Banoub J; Neal JW; Song W; Mizuno M; Harris CL
    Clin Exp Immunol; 2006 Nov; 146(2):294-302. PubMed ID: 17034582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis.
    Tüzün E; Saini SS; Morgan BP; Christadoss P
    J Neuroimmunol; 2006 Dec; 181(1-2):29-33. PubMed ID: 17056125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis.
    Lin F; Salant DJ; Meyerson H; Emancipator S; Morgan BP; Medof ME
    J Immunol; 2004 Feb; 172(4):2636-42. PubMed ID: 14764738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.
    Wu X; Tuzun E; Saini SS; Wang J; Li J; Aguilera-Aguirre L; Huda R; Christadoss P
    Immunol Lett; 2015 Dec; 168(2):306-12. PubMed ID: 26493475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DAF/CD55 and Protectin/CD59 modulate adaptive immunity and disease outcome in experimental autoimmune myasthenia gravis.
    Soltys J; Halperin JA; Xuebin Q
    J Neuroimmunol; 2012 Mar; 244(1-2):63-9. PubMed ID: 22325826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new mouse model of autoimmune ocular myasthenia gravis.
    Yang H; Wu B; Tüzün E; Saini SS; Li J; Allman W; Higgs S; Xiao TL; Christadoss P
    Invest Ophthalmol Vis Sci; 2007 Nov; 48(11):5101-11. PubMed ID: 17962462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis.
    Lin F; Emancipator SN; Salant DJ; Medof ME
    Lab Invest; 2002 May; 82(5):563-9. PubMed ID: 12003997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis.
    Wang HB; Shi FD; Li H; van der Meide PH; Ljunggren HG; Link H
    Clin Immunol; 2000 May; 95(2):156-62. PubMed ID: 10779409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ICOS is essential for the development of experimental autoimmune myasthenia gravis.
    Scott BG; Yang H; Tüzün E; Dong C; Flavell RA; Christadoss P
    J Neuroimmunol; 2004 Aug; 153(1-2):16-25. PubMed ID: 15265659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-MuSK patient antibodies disrupt the mouse neuromuscular junction.
    Cole RN; Reddel SW; Gervásio OL; Phillips WD
    Ann Neurol; 2008 Jun; 63(6):782-9. PubMed ID: 18384168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis.
    Zhang GX; Xiao BG; Bai XF; van der Meide PH; Orn A; Link H
    J Immunol; 1999 Apr; 162(7):3775-81. PubMed ID: 10201893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficiency of CC chemokine ligand 2 and decay-accelerating factor causes retinal degeneration in mice.
    Yu M; Kang K; Bu P; Bell BA; Kaul C; Qiao JB; Sturgill-Short G; Yu X; Tarchick MJ; Beight C; Zhang SX; Peachey NS
    Exp Eye Res; 2015 Sep; 138():126-33. PubMed ID: 26149093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis.
    Martínez-Martínez P; Losen M; Duimel H; Frederik P; Spaans F; Molenaar P; Vincent A; De Baets MH
    Am J Pathol; 2007 Feb; 170(2):644-57. PubMed ID: 17255332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidelines for pre-clinical assessment of the acetylcholine receptor--specific passive transfer myasthenia gravis model-Recommendations for methods and experimental designs.
    Kusner LL; Losen M; Vincent A; Lindstrom J; Tzartos S; Lazaridis K; Martinez-Martinez P
    Exp Neurol; 2015 Aug; 270():3-10. PubMed ID: 25743217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis.
    Schaffert H; Pelz A; Saxena A; Losen M; Meisel A; Thiel A; Kohler S
    Eur J Immunol; 2015 May; 45(5):1339-47. PubMed ID: 25676041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis.
    Losen M; Stassen MH; Martínez-Martínez P; Machiels BM; Duimel H; Frederik P; Veldman H; Wokke JH; Spaans F; Vincent A; De Baets MH
    Brain; 2005 Oct; 128(Pt 10):2327-37. PubMed ID: 16150851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.