These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 12417651)
1. The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. Helfrich-Förster C; Edwards T; Yasuyama K; Wisotzki B; Schneuwly S; Stanewsky R; Meinertzhagen IA; Hofbauer A J Neurosci; 2002 Nov; 22(21):9255-66. PubMed ID: 12417651 [TBL] [Abstract][Full Text] [Related]
2. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct. Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional regulation of atonal required for Drosophila larval eye development by concerted action of eyes absent, sine oculis and hedgehog signaling independent of fused kinase and cubitus interruptus. Suzuki T; Saigo K Development; 2000 Apr; 127(7):1531-40. PubMed ID: 10704398 [TBL] [Abstract][Full Text] [Related]
4. The control of cell fate in the embryonic visual system by atonal, tailless and EGFR signaling. Daniel A; Dumstrei K; Lengyel JA; Hartenstein V Development; 1999 Jul; 126(13):2945-54. PubMed ID: 10357938 [TBL] [Abstract][Full Text] [Related]
5. Extraretinal photoreceptors at the compound eye's posterior margin in Drosophila melanogaster. Yasuyama K; Meinertzhagen IA J Comp Neurol; 1999 Sep; 412(2):193-202. PubMed ID: 10441750 [TBL] [Abstract][Full Text] [Related]
6. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. Veleri S; Rieger D; Helfrich-Förster C; Stanewsky R J Biol Rhythms; 2007 Feb; 22(1):29-42. PubMed ID: 17229923 [TBL] [Abstract][Full Text] [Related]
7. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowfly Protophormia terraenovae. Yasuyama K; Okada Y; Hamanaka Y; Shiga S J Comp Neurol; 2006 Jan; 494(2):331-44. PubMed ID: 16320242 [TBL] [Abstract][Full Text] [Related]
8. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. Kaneko M; Helfrich-Förster C; Hall JC J Neurosci; 1997 Sep; 17(17):6745-60. PubMed ID: 9254686 [TBL] [Abstract][Full Text] [Related]
9. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila. Mealey-Ferrara ML; Montalvo AG; Hall JC J Neurogenet; 2003; 17(2-3):171-221. PubMed ID: 14668199 [TBL] [Abstract][Full Text] [Related]
10. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. Saint-Charles A; Michard-Vanhée C; Alejevski F; Chélot E; Boivin A; Rouyer F J Comp Neurol; 2016 Oct; 524(14):2828-44. PubMed ID: 26972685 [TBL] [Abstract][Full Text] [Related]
11. Localization of choline acetyltransferase-expressing neurons in the larval visual system of Drosophila melanogaster. Yasuyama K; Kitamoto T; Salvaterra PM Cell Tissue Res; 1995 Nov; 282(2):193-202. PubMed ID: 8565051 [TBL] [Abstract][Full Text] [Related]
12. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Helfrich-Förster C; Winter C; Hofbauer A; Hall JC; Stanewsky R Neuron; 2001 Apr; 30(1):249-61. PubMed ID: 11343659 [TBL] [Abstract][Full Text] [Related]
13. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila. Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451 [TBL] [Abstract][Full Text] [Related]
14. Circadian pacemaker neurons transmit and modulate visual information to control a rapid behavioral response. Mazzoni EO; Desplan C; Blau J Neuron; 2005 Jan; 45(2):293-300. PubMed ID: 15664180 [TBL] [Abstract][Full Text] [Related]
15. The embryonic development of the Drosophila visual system. Green P; Hartenstein AY; Hartenstein V Cell Tissue Res; 1993 Sep; 273(3):583-98. PubMed ID: 8402833 [TBL] [Abstract][Full Text] [Related]
16. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. Ivanchenko M; Stanewsky R; Giebultowicz JM J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780 [TBL] [Abstract][Full Text] [Related]
17. Binary cell fate decisions and fate transformation in the Drosophila larval eye. Mishra AK; Tsachaki M; Rister J; Ng J; Celik A; Sprecher SG PLoS Genet; 2013; 9(12):e1004027. PubMed ID: 24385925 [TBL] [Abstract][Full Text] [Related]
18. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Ni JD; Baik LS; Holmes TC; Montell C Nature; 2017 May; 545(7654):340-344. PubMed ID: 28489826 [TBL] [Abstract][Full Text] [Related]
19. Distinct regulation of atonal in a visual organ of Drosophila: Organ-specific enhancer and lack of autoregulation in the larval eye. Zhou Q; Yu L; Friedrich M; Pignoni F Dev Biol; 2017 Jan; 421(1):67-76. PubMed ID: 27693434 [TBL] [Abstract][Full Text] [Related]
20. Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila. Malpel S; Klarsfeld A; Rouyer F J Biol Rhythms; 2004 Feb; 19(1):10-21. PubMed ID: 14964700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]