These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 12417967)

  • 1. The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats.
    Turrone P; Remington G; Kapur S; Nobrega JN
    Psychopharmacology (Berl); 2003 Jan; 165(2):166-71. PubMed ID: 12417967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia.
    Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK
    Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of within-day continuous vs. transient dopamine D2 receptor occupancy in the development of vacuous chewing movements (VCMs) in rats.
    Turrone P; Remington G; Kapur S; Nobrega JN
    Neuropsychopharmacology; 2003 Aug; 28(8):1433-9. PubMed ID: 12838271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of haloperidol-induced tardive vacuous chewing movements and supersensitive somatodendritic serotonergic response by buspirone in rats.
    Haleem DJ; Samad N; Haleem MA
    Pharmacol Biochem Behav; 2007 May; 87(1):115-21. PubMed ID: 17498786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycine and D-cycloserine attenuate vacuous chewing movements in a rat model of tardive dyskinesia.
    Shoham S; Mazeh H; Javitt DC; Heresco-Levy U
    Brain Res; 2004 Apr; 1004(1-2):142-7. PubMed ID: 15033429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in mRNA levels of D2 receptors and neuropeptides in striatonigral and striatopallidal neurons of rats with neuroleptic-induced dyskinesias.
    Egan MF; Hurd Y; Hyde TM; Weinberger DR; Wyatt RJ; Kleinman JE
    Synapse; 1994 Nov; 18(3):178-89. PubMed ID: 7531873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rat striatum.
    Roberts RC; Gaither LA; Gao XM; Kashyap SM; Tamminga CA
    Synapse; 1995 Jul; 20(3):234-43. PubMed ID: 7570355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory mechanisms in neuroleptic-induced vacuous chewing movements (VCMs): possible involvement of calcium and nitric oxide.
    Naidu PS; Kulkarni SK
    Behav Pharmacol; 2001 Jun; 12(3):209-16. PubMed ID: 11485057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy?
    Turrone P; Remington G; Nobrega JN
    Neurosci Biobehav Rev; 2002 May; 26(3):361-80. PubMed ID: 12034136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haloperidol versus risperidone on rat "early onset" vacuous chewing.
    Marchese G; Bartholini F; Casu MA; Ruiu S; Casti P; Congeddu E; Tambaro S; Pani L
    Behav Brain Res; 2004 Feb; 149(1):9-16. PubMed ID: 14739005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous but not intermittent olanzapine infusion induces vacuous chewing movements in rats.
    Turrone P; Remington G; Kapur S; Nobrega JN
    Biol Psychiatry; 2005 Feb; 57(4):406-11. PubMed ID: 15705357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol.
    Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM
    Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurochemical changes in the entopeduncular nucleus and increased oral behavior in rats treated subchronically with clozapine or haloperidol.
    Yu J; Källström L; Wiesel FA; Johnson AE
    Synapse; 1999 Dec; 34(3):192-207. PubMed ID: 10523757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of chronic haloperidol treatment on dendritic spines in the rat striatum.
    Kelley JJ; Gao XM; Tamminga CA; Roberts RC
    Exp Neurol; 1997 Aug; 146(2):471-8. PubMed ID: 9270058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoradiographic mapping of mu opioid receptor changes in rat brain after long-term haloperidol treatment: relationship to the development of vacuous chewing movements.
    Sasaki T; Kennedy JL; Nobrega JN
    Psychopharmacology (Berl); 1996 Nov; 128(1):97-104. PubMed ID: 8944412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure to down regulate NMDA receptors in the striatum and nucleus accumbens associated with neuroleptic-induced dyskinesia.
    Hamid EH; Hyde TM; Baca SM; Egan MF
    Brain Res; 1998 Jun; 796(1-2):291-5. PubMed ID: 9689480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes.
    Bishnoi M; Chopra K; Kulkarni SK
    Eur J Pharmacol; 2006 Dec; 552(1-3):55-66. PubMed ID: 17064683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential role of dopamine D1 and D2 receptors in isoniazid-induced vacuous chewing movements.
    Naidu PS; Kulkarni SK
    Methods Find Exp Clin Pharmacol; 2000 Dec; 22(10):747-51. PubMed ID: 11346896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced 5-HT2C receptor signaling is associated with haloperidol-induced "early onset" vacuous chewing in rats: implications for antipsychotic drug therapy.
    Wolf WA; Bieganski GJ; Guillen V; Mignon L
    Psychopharmacology (Berl); 2005 Oct; 182(1):84-94. PubMed ID: 15986194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia.
    Bachus SE; Yang E; McCloskey SS; Minton JN
    Behav Brain Res; 2012 Jun; 231(2):323-36. PubMed ID: 22503783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.